HOME





Princeton Large Torus
The Princeton Large Torus (or PLT), was an early tokamak built at the Princeton Plasma Physics Laboratory (PPPL). It was one of the first large scale tokamak machines and among the most powerful in terms of current and magnetic fields. Originally built to demonstrate that larger devices would have better confinement times, it was later modified to perform heating of the plasma fuel, a requirement of any practical fusion power device. The tokamak became a topic of serious discussion in 1968, when the Soviets published new data showing them to be far better than any other fusion device. This generated significant skepticism among other researchers and it was some time before the PPPL was convinced to convert their Model C stellarator to the tokamak configuration. It immediately validated the Soviet results and then surpassed them. The next step in developing the system would be to build a larger machine to test whether the confinement time of the plasma ''scaled'' as expected. PLT ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tokamak
A tokamak (; ) is a device which uses a powerful magnetic field generated by external magnets to confine plasma (physics), plasma in the shape of an axially symmetrical torus. The tokamak is one of several types of magnetic confinement fusion, magnetic confinement devices being developed to produce controlled thermonuclear fusion power. The tokamak concept is currently one of the leading candidates for a practical fusion reactor for providing minimally polluting electrical power. The proposal to use controlled thermonuclear fusion for industrial purposes and a specific scheme using thermal insulation of high-temperature plasma by an electric field was first formulated by the Soviet physicist Oleg Lavrentiev in a mid-1950 paper. In 1951, Andrei Sakharov and Igor Tamm modified the scheme by proposing a theoretical basis for a thermonuclear reactor, where the plasma would have the shape of a torus and be held by a magnetic field. The first tokamak was built in the Soviet Union ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Oak Ridge National Laboratory
Oak Ridge National Laboratory (ORNL) is a federally funded research and development centers, federally funded research and development center in Oak Ridge, Tennessee, United States. Founded in 1943, the laboratory is sponsored by the United States Department of Energy and administered by UT–Battelle, UT–Battelle, LLC. Established in 1943, ORNL is the largest science and energy national laboratory in the Department of Energy system by size and third largest by annual budget. It is located in the Roane County, Tennessee, Roane County section of Oak Ridge. Its scientific programs focus on materials science, materials, nuclear power, nuclear science, neutron science, energy, high-performance computing, environmental science, systems biology and national security, sometimes in partnership with the state of Tennessee, universities and other industries. ORNL has several of the world's top supercomputers, including Frontier (supercomputer), Frontier, ranked by the TOP500 as the wo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lyman Spitzer
Lyman Spitzer Jr. (June 26, 1914 – March 31, 1997) was an American theoretical physicist, astronomer and mountaineer. As a scientist, he carried out research into star formation and plasma physics and in 1946 conceived the idea of telescopes operating in outer space. Spitzer invented the stellarator plasma device and is the namesake of NASA's Spitzer Space Telescope. As a mountaineer, he made the first ascent of Mount Thor, with Donald C. Morton. Early life and education Spitzer was born to a Presbyterian family in Toledo, Ohio, the son of Lyman Spitzer Sr. and Blanche Carey (née Brumback). Through his paternal grandmother, he was related to inventor Eli Whitney. Spitzer graduated from Scott High School. He then attended Phillips Academy from 1929 to 1931 and went on to Yale College, where he graduated Phi Beta Kappa in 1935 and was a member of Skull and Bones. During a year of study at St John's College, Cambridge, he was influenced by Arthur Eddington and the young ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stellarator
A stellarator confines Plasma (physics), plasma using external magnets. Scientists aim to use stellarators to generate fusion power. It is one of many types of magnetic confinement fusion devices. The name "stellarator" refers to stars because fusion mostly occurs in stars such as the Sun. It is one of the earliest human-designed fusion power devices. The stellarator was invented by American scientist Lyman Spitzer in 1951. Much of its early development was carried out by Spitzer's team at what became the Princeton Plasma Physics Laboratory (PPPL). Spitzer's Model A began operation in 1953 and demonstrated plasma confinement. Larger models followed, but demonstrated poor performance, losing plasma at rates far worse than theoretical predictions. By the early 1960s, hopes of producing a commercial machine faded, and attention turned to studying fundamental theory. By the mid-1960s, Spitzer was convinced that the stellarator was matching the Bohm diffusion rate, which suggested i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Z-pinch
In fusion power research, the Z-pinch (zeta pinch) is a type of plasma confinement system that uses an electric current in the plasma to generate a magnetic field that compresses it (see pinch). These systems were originally referred to simply as pinch or Bennett pinch (after Willard Harrison Bennett), but the introduction of the θ-pinch (theta pinch) concept led to the need for clearer, more precise terminology. The name refers to the direction of the current in the devices, the Z-axis on a Cartesian three-dimensional graph. Any machine that causes a pinch effect due to current running in that direction is correctly referred to as a Z-pinch system, and this encompasses a wide variety of devices used for an equally wide variety of purposes. Early uses focused on fusion research in donut-shaped tubes with the Z-axis running down the inside of the tube, while modern devices are generally cylindrical and used to generate high-intensity x-ray sources for the study of nuclear w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Magnetic Mirror
A magnetic mirror, also known as a magnetic trap or sometimes as a pyrotron, is a type of magnetic confinement fusion device used in fusion power to trap high temperature Plasma (physics), plasma using magnetic fields. The mirror was one of the earliest major approaches to fusion power, along with the stellarator and z-pinch machines. In a classic magnetic mirror, a configuration of electromagnets is used to create an area with an increasing density of magnetic field lines at either end of a confinement volume. Particles approaching the ends experience an increasing force that eventually causes them to reverse direction and return to the confinement area. This mirror effect will occur only for particles within a limited range of velocities and angles of approach, while those outside the limits will escape, making mirrors inherently "leaky". An analysis of early fusion devices by Edward Teller pointed out that the basic mirror concept is inherently unstable. In 1960, Soviet resear ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bohm Diffusion
The diffusion of plasma across a magnetic field was conjectured to follow the Bohm diffusion scaling as indicated from the early plasma experiments of very lossy machines. This predicted that the rate of diffusion was linear with temperature and inversely linear with the strength of the confining magnetic field. The rate predicted by Bohm diffusion is much higher than the rate predicted by classical diffusion, which develops from a random walk within the plasma. The classical model scaled inversely with the square of the magnetic field. If the classical model is correct, small increases in the field lead to much longer confinement times. If the Bohm model is correct, magnetically confined fusion would not be practical. Early fusion energy machines appeared to behave according to Bohm's model, and by the 1960s there was a significant stagnation within the field. The introduction of the tokamak in 1968 was the first evidence that the Bohm model did not hold for all machines. Bohm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Manhattan Project
The Manhattan Project was a research and development program undertaken during World War II to produce the first nuclear weapons. It was led by the United States in collaboration with the United Kingdom and Canada. From 1942 to 1946, the project was directed by Major General Leslie Groves of the United States Army Corps of Engineers, U.S. Army Corps of Engineers. Nuclear physicist J. Robert Oppenheimer was the director of the Los Alamos Laboratory that designed the bombs. The Army program was designated the Manhattan District, as its first headquarters were in Manhattan; the name gradually superseded the official codename, Development of Substitute Materials, for the entire project. The project absorbed its earlier British counterpart, Tube Alloys, and subsumed the program from the American civilian Office of Scientific Research and Development. The Manhattan Project employed nearly 130,000 people at its peak and cost nearly US$2 billion (equivalent to about $ b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Plasma Diffusion
Due to the presence of charged particles in Plasma (physics), plasma, plasma diffusion significantly differs from Molecular diffusion, diffusion of gas or liquid. Even in the absence of externally applied Electromagnetic field, fields, the interaction between the positive (ions) and negative (usually, electrons) plasma particles results in ambipolar diffusion with the diffusion coefficient that is dissimilar to that of either electron or ion species separately if the interaction is neglected. Plasma diffusion across a magnetic field is an important topic in magnetic confinement of fusion power, fusion plasma. It especially concerns how plasma transport is related to the strength of an external magnetic field B. Classical diffusion predicts the 1/B2 scaling, while Bohm diffusion, borne out of experimental observations from early confinement machines, was conjectured to follow the 1/B scaling. It is still an area of Bohm diffusion#Further research, active research. See also

* Ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up quark, up and down quark, down quarks. Electrons are extremely lightweight particles that orbit the positively charged atomic nucleus, nucleus of atoms. Their negative charge is balanced by the positive charge of protons in the nucleus, giving atoms their overall electric charge#Charge neutrality, neutral charge. Ordinary matter is composed of atoms, each consisting of a positively charged nucleus surrounded by a number of orbiting electrons equal to the number of protons. The configuration and energy levels of these orbiting electrons determine the chemical properties of an atom. Electrons are bound to the nucleus to different degrees. The outermost or valence electron, valence electrons are the least tightly bound and are responsible for th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Magnetic Field
A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets. In addition, a nonuniform magnetic field exerts minuscule forces on "nonmagnetic" materials by three other magnetic effects: paramagnetism, diamagnetism, and antiferromagnetism, although these forces are usually so small they can only be detected by laboratory equipment. Magnetic fields surround magnetized materials, electric currents, and electric fields varying in time. Since both strength and direction of a magnetic field may vary with location, it is described mathematically by a function (mathematics), function assigning a Euclidean vector, vector to each point of space, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nuclear Fusion
Nuclear fusion is a nuclear reaction, reaction in which two or more atomic nuclei combine to form a larger nuclei, nuclei/neutrons, neutron by-products. The difference in mass between the reactants and products is manifested as either the release or absorption (electromagnetic radiation), absorption of energy. This difference in mass arises as a result of the difference in nuclear binding energy between the atomic nuclei before and after the fusion reaction. Nuclear fusion is the process that powers all active stars, via many Stellar nucleosynthesis, reaction pathways. Fusion processes require an extremely large Lawson criterion, triple product of temperature, density, and confinement time. These conditions occur only in Stellar core, stellar cores, advanced Nuclear weapon design, nuclear weapons, and are approached in List of fusion experiments, fusion power experiments. A nuclear fusion process that produces atomic nuclei lighter than nickel-62 is generally exothermic, due t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]