HOME





Positive And Negative Sets
In measure theory, given a measurable space (X, \Sigma) and a signed measure \mu on it, a set A \in \Sigma is called a for \mu if every \Sigma-measurable subset of A has nonnegative measure; that is, for every E \subseteq A that satisfies E \in \Sigma, \mu(E) \geq 0 holds. Similarly, a set A \in \Sigma is called a for \mu if for every subset E \subseteq A satisfying E \in \Sigma, \mu(E) \leq 0 holds. Intuitively, a measurable set A is positive (resp. negative) for \mu if \mu is nonnegative (resp. nonpositive) everywhere on A. Of course, if \mu is a nonnegative measure, every element of \Sigma is a positive set for \mu. In the light of Radon–Nikodym theorem, if \nu is a σ-finite positive measure such that , \mu, \ll \nu, a set A is a positive set for \mu if and only if the Radon–Nikodym derivative d\mu/d\nu is nonnegative \nu-almost everywhere on A. Similarly, a negative set is a set where d\mu/d\nu \leq 0 \nu-almost everywhere. Properties It follows from the definit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Measure Theory
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations (such as spectral measures and projection-valued measures) of measure are widely used in quantum physics and physics in general. The intuition behind this concept dates back to ancient Greece, when Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile Borel, Henri Lebesgue, Nikolai Luzin, Johann Radon, Const ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Signed Measure
In mathematics, signed measure is a generalization of the concept of (positive) measure by allowing the set function to take negative values. Definition There are two slightly different concepts of a signed measure, depending on whether or not one allows it to take infinite values. Signed measures are usually only allowed to take finite real values, while some textbooks allow them to take infinite values. To avoid confusion, this article will call these two cases "finite signed measures" and "extended signed measures". Given a measurable space (X, \Sigma) (that is, a set X with a σ-algebra \Sigma on it), an extended signed measure is a set function \mu : \Sigma \to \R \cup \ such that \mu(\varnothing) = 0 and \mu is σ-additive – that is, it satisfies the equality \mu\left(\bigcup_^\infty A_n\right) = \sum_^\infty \mu(A_n) for any sequence A_1, A_2, \ldots, A_n, \ldots of disjoint sets in \Sigma. The series on the right must converge absolutely when the value of the l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Measure (mathematics)
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures ( length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations (such as spectral measures and projection-valued measures) of measure are widely used in quantum physics and physics in general. The intuition behind this concept dates back to ancient Greece, when Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile Borel, Henri Lebesgue, Nikolai Luzin, Johann Radon, Co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Radon–Nikodym Theorem
In mathematics, the Radon–Nikodym theorem is a result in measure theory that expresses the relationship between two measures defined on the same measurable space. A ''measure'' is a set function that assigns a consistent magnitude to the measurable subsets of a measurable space. Examples of a measure include area and volume, where the subsets are sets of points; or the probability of an event, which is a subset of possible outcomes within a wider probability space. One way to derive a new measure from one already given is to assign a density to each point of the space, then integrate over the measurable subset of interest. This can be expressed as :\nu(A) = \int_A f \, d\mu, where is the new measure being defined for any measurable subset and the function is the density at a given point. The integral is with respect to an existing measure , which may often be the canonical Lebesgue measure on the real line or the ''n''-dimensional Euclidean space (corresponding to our s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q'', there could be other scenarios where ''P'' is true and ''Q' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Null Set
In mathematical analysis, a null set N \subset \mathbb is a measurable set that has measure zero. This can be characterized as a set that can be covered by a countable union of intervals of arbitrarily small total length. The notion of null set should not be confused with the empty set as defined in set theory. Although the empty set has Lebesgue measure zero, there are also non-empty sets which are null. For example, any non-empty countable set of real numbers has Lebesgue measure zero and therefore is null. More generally, on a given measure space M = (X, \Sigma, \mu) a null set is a set S\in\Sigma such that \mu(S) = 0. Example Every finite or countably infinite subset of the real numbers is a null set. For example, the set of natural numbers and the set of rational numbers are both countably infinite and therefore are null sets when considered as subsets of the real numbers. The Cantor set is an example of an uncountable null set. Definition Suppose A is a subset o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hahn Decomposition Theorem
In mathematics, the Hahn decomposition theorem, named after the Austrian mathematician Hans Hahn, states that for any measurable space (X,\Sigma) and any signed measure \mu defined on the \sigma -algebra \Sigma , there exist two \Sigma -measurable sets, P and N , of X such that: # P \cup N = X and P \cap N = \varnothing . # For every E \in \Sigma such that E \subseteq P , one has \mu(E) \geq 0 , i.e., P is a positive set for \mu . # For every E \in \Sigma such that E \subseteq N , one has \mu(E) \leq 0 , i.e., N is a negative set for \mu . Moreover, this decomposition is essentially unique, meaning that for any other pair (P',N') of \Sigma -measurable subsets of X fulfilling the three conditions above, the symmetric differences P \triangle P' and N \triangle N' are \mu -null sets in the strong sense that every \Sigma -measurable subset of them has zero measure. The pair (P,N) is then called a ''Hahn decomposition'' of the signed measur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partition Of A Set
In mathematics, a partition of a set is a grouping of its elements into non-empty subsets, in such a way that every element is included in exactly one subset. Every equivalence relation on a set defines a partition of this set, and every partition defines an equivalence relation. A set equipped with an equivalence relation or a partition is sometimes called a setoid, typically in type theory and proof theory. Definition and Notation A partition of a set ''X'' is a set of non-empty subsets of ''X'' such that every element ''x'' in ''X'' is in exactly one of these subsets (i.e., ''X'' is a disjoint union of the subsets). Equivalently, a family of sets ''P'' is a partition of ''X'' if and only if all of the following conditions hold: *The family ''P'' does not contain the empty set (that is \emptyset \notin P). *The union of the sets in ''P'' is equal to ''X'' (that is \textstyle\bigcup_ A = X). The sets in ''P'' are said to exhaust or cover ''X''. See also collectively ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Up To
Two mathematical objects ''a'' and ''b'' are called equal up to an equivalence relation ''R'' * if ''a'' and ''b'' are related by ''R'', that is, * if ''aRb'' holds, that is, * if the equivalence classes of ''a'' and ''b'' with respect to ''R'' are equal. This figure of speech is mostly used in connection with expressions derived from equality, such as uniqueness or count. For example, ''x'' is unique up to ''R'' means that all objects ''x'' under consideration are in the same equivalence class with respect to the relation ''R''. Moreover, the equivalence relation ''R'' is often designated rather implicitly by a generating condition or transformation. For example, the statement "an integer's prime factorization is unique up to ordering" is a concise way to say that any two lists of prime factors of a given integer are equivalent with respect to the relation ''R'' that relates two lists if one can be obtained by reordering (permutation) from the other. As another example, the stat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hahn Decomposition
In mathematics, the Hahn decomposition theorem, named after the Austrian mathematician Hans Hahn, states that for any measurable space (X,\Sigma) and any signed measure \mu defined on the \sigma -algebra \Sigma , there exist two \Sigma -measurable sets, P and N , of X such that: # P \cup N = X and P \cap N = \varnothing . # For every E \in \Sigma such that E \subseteq P , one has \mu(E) \geq 0 , i.e., P is a positive set for \mu . # For every E \in \Sigma such that E \subseteq N , one has \mu(E) \leq 0 , i.e., N is a negative set for \mu . Moreover, this decomposition is essentially unique, meaning that for any other pair (P',N') of \Sigma -measurable subsets of X fulfilling the three conditions above, the symmetric differences P \triangle P' and N \triangle N' are \mu -null sets in the strong sense that every \Sigma -measurable subset of them has zero measure. The pair (P,N) is then called a ''Hahn decomposition'' of the signed measure ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]