Polygonalization
In computational geometry, a polygonalization of a finite set of points in the Euclidean plane is a simple polygon with the given points as its vertices. A polygonalization may also be called a polygonization, simple polygonalization, Hamiltonian polygon, non-crossing Hamiltonian cycle, or crossing-free straight-edge spanning cycle. Every point set that does not lie on a single line has at least one polygonalization, which can be found in polynomial time. For points in convex position, there is only one, but for some other point sets there can be exponentially many. Finding an optimal polygonalization under several natural optimization criteria is a hard problem, including as a special case the travelling salesman problem. The complexity of counting all polygonalizations remains unknown. Definition A polygonalization is a simple polygon having a given set of points in the Euclidean plane as its set of vertices. A polygon may be described by a cyclic order on its vertices, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
16 Polygonalizations
Sixteen or 16 may refer to: * 16 (number), the natural number following 15 and preceding 17 *one of the years 16 BC, AD 16, 1916, 2016 Films * ''Pathinaaru'' or ''Sixteen'', a 2010 Tamil film * ''Sixteen'' (1943 film), a 1943 Argentine film directed by Carlos Hugo Christensen * ''Sixteen'' (2013 Indian film), a 2013 Hindi film * ''Sixteen'' (2013 British film), a 2013 British film by director Rob Brown Music *The Sixteen, an English choir *16 (band), a sludge metal band *Sixteen (Polish band), a Polish band Albums * ''16'' (Robin album), a 2014 album by Robin * 16 (Madhouse album), a 1987 album by Madhouse * ''Sixteen'' (album), a 1983 album by Stacy Lattisaw *''Sixteen'' , a 2005 album by Shook Ones * ''16'', a 2020 album by Wejdene Songs * "16" (Sneaky Sound System song), 2009 * "Sixteen" (Thomas Rhett song), 2017 * "Sixteen" (Ellie Goulding song), 2019 *"16", by Craig David from ''Following My Intuition'', 2016 *"16", by Green Day from ''39/Smooth'', 1990 *"16", by Hig ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
NP-complete
In computational complexity theory, a problem is NP-complete when: # it is a problem for which the correctness of each solution can be verified quickly (namely, in polynomial time) and a brute-force search algorithm can find a solution by trying all possible solutions. # the problem can be used to simulate every other problem for which we can verify quickly that a solution is correct. In this sense, NP-complete problems are the hardest of the problems to which solutions can be verified quickly. If we could find solutions of some NP-complete problem quickly, we could quickly find the solutions of every other problem to which a given solution can be easily verified. The name "NP-complete" is short for "nondeterministic polynomial-time complete". In this name, "nondeterministic" refers to nondeterministic Turing machines, a way of mathematically formalizing the idea of a brute-force search algorithm. Polynomial time refers to an amount of time that is considered "quick" for a det ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graph Traversal
In computer science, graph traversal (also known as graph search) refers to the process of visiting (checking and/or updating) each vertex in a graph. Such traversals are classified by the order in which the vertices are visited. Tree traversal is a special case of graph traversal. Redundancy Unlike tree traversal, graph traversal may require that some vertices be visited more than once, since it is not necessarily known before transitioning to a vertex that it has already been explored. As graphs become more dense, this redundancy becomes more prevalent, causing computation time to increase; as graphs become more sparse, the opposite holds true. Thus, it is usually necessary to remember which vertices have already been explored by the algorithm, so that vertices are revisited as infrequently as possible (or in the worst case, to prevent the traversal from continuing indefinitely). This may be accomplished by associating each vertex of the graph with a "color" or "visitation" ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
State Space
A state space is the set of all possible configurations of a system. It is a useful abstraction for reasoning about the behavior of a given system and is widely used in the fields of artificial intelligence and game theory. For instance, the toy problem Vacuum World has a discrete finite state space in which there are a limited set of configurations that the vacuum and dirt can be in. A "counter" system, where states are the natural numbers starting at 1 and are incremented over time has an infinite discrete state space. The angular position of an undamped pendulum is a continuous (and therefore infinite) state space. Definition In the theory of dynamical systems, the state space of a discrete system defined by a function ''ƒ'' can be modeled as a directed graph where each possible state of the dynamical system is represented by a vertex with a directed edge from ''a'' to ''b'' if and only if ''ƒ''(''a'') = ''b''. This is known as a state diagram. For a co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dynamic Programming
Dynamic programming is both a mathematical optimization method and a computer programming method. The method was developed by Richard Bellman in the 1950s and has found applications in numerous fields, from aerospace engineering to economics. In both contexts it refers to simplifying a complicated problem by breaking it down into simpler sub-problems in a recursive manner. While some decision problems cannot be taken apart this way, decisions that span several points in time do often break apart recursively. Likewise, in computer science, if a problem can be solved optimally by breaking it into sub-problems and then recursively finding the optimal solutions to the sub-problems, then it is said to have '' optimal substructure''. If sub-problems can be nested recursively inside larger problems, so that dynamic programming methods are applicable, then there is a relation between the value of the larger problem and the values of the sub-problems.Cormen, T. H.; Leiserson, C. E.; Riv ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Point-set Triangulation
A triangulation of a set of points \mathcal in the Euclidean space \mathbb^d is a simplicial complex that covers the convex hull of \mathcal, and whose vertices belong to \mathcal. In the plane (when \mathcal is a set of points in \mathbb^2), triangulations are made up of triangles, together with their edges and vertices. Some authors require that all the points of \mathcal are vertices of its triangulations. In this case, a triangulation of a set of points \mathcal in the plane can alternatively be defined as a maximal set of non-crossing edges between points of \mathcal. In the plane, triangulations are special cases of planar straight-line graphs. A particularly interesting kind of triangulations are the Delaunay triangulations. They are the geometric duals of Voronoi diagrams. The Delaunay triangulation of a set of points \mathcal in the plane contains the Gabriel graph, the nearest neighbor graph and the minimal spanning tree of \mathcal. Triangulations have a number o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Planar Separator Theorem
In graph theory, the planar separator theorem is a form of isoperimetric inequality for planar graphs, that states that any planar graph can be split into smaller pieces by removing a small number of vertices. Specifically, the removal of vertices from an -vertex graph (where the invokes big O notation) can partition the graph into disjoint subgraphs each of which has at most vertices. A weaker form of the separator theorem with vertices in the separator instead of was originally proven by , and the form with the tight asymptotic bound on the separator size was first proven by . Since their work, the separator theorem has been reproven in several different ways, the constant in the term of the theorem has been improved, and it has been extended to certain classes of nonplanar graphs. Repeated application of the separator theorem produces a separator hierarchy which may take the form of either a tree decomposition or a branch-decomposition of the graph. Separator hierar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
♯P-complete
The #P-complete problems (pronounced "sharp P complete" or "number P complete") form a complexity class in computational complexity theory. The problems in this complexity class are defined by having the following two properties: *The problem is in #P, the class of problems that can be defined as counting the number of accepting paths of a polynomial-time non-deterministic Turing machine. *The problem is #P-hard, meaning that every other problem in #P has a Turing reduction or polynomial-time counting reduction to it. A counting reduction is a pair of polynomial-time transformations from inputs of the other problem to inputs of the given problem and from outputs of the given problem to outputs of the other problem, allowing the other problem to be solved using any subroutine for the given problem. A Turing reduction is an algorithm for the other problem that makes a polynomial number of calls to a subroutine for the given problem and, outside of those calls, uses polynomial t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
NP (complexity)
In computational complexity theory, NP (nondeterministic polynomial time) is a complexity class used to classify decision problems. NP is the set of decision problems for which the problem instances, where the answer is "yes", have proofs verifiable in polynomial time by a deterministic Turing machine, or alternatively the set of problems that can be solved in polynomial time by a nondeterministic Turing machine.''Polynomial time'' refers to how quickly the number of operations needed by an algorithm, relative to the size of the problem, grows. It is therefore a measure of efficiency of an algorithm. An equivalent definition of NP is the set of decision problems ''solvable'' in polynomial time by a nondeterministic Turing machine. This definition is the basis for the abbreviation NP; "nondeterministic, polynomial time". These two definitions are equivalent because the algorithm based on the Turing machine consists of two phases, the first of which consists of a guess ab ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
♯P
In computational complexity theory, the complexity class #P (pronounced "sharp P" or, sometimes "number P" or "hash P") is the set of the counting problems associated with the decision problems in the set NP. More formally, #P is the class of function problems of the form "compute ''f''(''x'')", where ''f'' is the number of accepting paths of a nondeterministic Turing machine running in polynomial time. Unlike most well-known complexity classes, it is not a class of decision problems but a class of function problems. The most difficult, representative problems of this class are #P-complete. Relation to decision problems An NP decision problem is often of the form "Are there any solutions that satisfy certain constraints?" For example: * Are there any subsets of a list of integers that add up to zero? (subset sum problem) * Are there any Hamiltonian cycles in a given graph with cost less than 100? (traveling salesman problem) * Are there any variable assignments that satisfy a g ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bitonic Tour
In computational geometry, a bitonic tour of a set of point sites in the Euclidean plane is a closed polygonal chain that has each site as one of its vertices, such that any vertical line crosses the chain at most twice. Optimal bitonic tours The optimal bitonic tour is a bitonic tour of minimum total length. It is a standard exercise in dynamic programming to devise a polynomial time algorithm that constructs the optimal bitonic tour. Although the usual method for solving it in this way takes time O(n^2), a faster algorithm with time O(n\log^2 n) is known. The problem of constructing optimal bitonic tours is often credited to Jon L. Bentley, who published in 1990 an experimental comparison of many heuristics for the traveling salesman problem; however, Bentley's experiments do not include bitonic tours. The first publication that describes the bitonic tour problem appears to be a different 1990 publication, the first edition of the textbook ''Introduction to Algorithms'' by Th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |