HOME



picture info

Pohlig–Hellman Algorithm
In group theory, the Pohlig–Hellman algorithm, sometimes credited as the Silver–Pohlig–Hellman algorithm,#Mollin06, Mollin 2006, pg. 344 is a special-purpose algorithm for computing discrete logarithms in a finite abelian group whose order is a smooth integer. The algorithm was introduced by Roland Silver, but first published by Stephen Pohlig and Martin Hellman, who credit Silver with its earlier independent but unpublished discovery. Pohlig and Hellman also list Richard Schroeppel and H. Block as having found the same algorithm, later than Silver, but again without publishing it. Groups of prime-power order As an important special case, which is used as a subroutine in the general algorithm (see below), the Pohlig–Hellman algorithm applies to Group (mathematics), groups whose order is a prime power. The basic idea of this algorithm is to iteratively compute the p-adic digits of the logarithm by repeatedly "shifting out" all but one unknown digit in the exponent, and co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prime Power
In mathematics, a prime power is a positive integer which is a positive integer power of a single prime number. For example: , and are prime powers, while , and are not. The sequence of prime powers begins: 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243, 251, … . The prime powers are those positive integers that are divisible by exactly one prime number; in particular, the number 1 is not a prime power. Prime powers are also called primary numbers, as in the primary decomposition. Properties Algebraic properties Prime powers are powers of prime numbers. Every prime power (except powers of 2 greater than 4) has a primitive root; thus the multiplicative group of integers modulo ''p''''n'' (that is, the group of units of the ri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian Group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after the Norwegian mathematician Niels Henrik Abel. The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified. Definition An abelian group is a set A, together with an operation ・ , that combines any two elements a and b of A to form another element of A, denoted a \cdot b. The sym ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chinese Remainder Theorem
In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer ''n'' by several integers, then one can determine uniquely the remainder of the division of ''n'' by the product of these integers, under the condition that the divisors are pairwise coprime (no two divisors share a common factor other than 1). The theorem is sometimes called Sunzi's theorem. Both names of the theorem refer to its earliest known statement that appeared in '' Sunzi Suanjing'', a Chinese manuscript written during the 3rd to 5th century CE. This first statement was restricted to the following example: If one knows that the remainder of ''n'' divided by 3 is 2, the remainder of ''n'' divided by 5 is 3, and the remainder of ''n'' divided by 7 is 2, then with no other information, one can determine the remainder of ''n'' divided by 105 (the product of 3, 5, and 7) without knowing the value of ''n''. In this example, the remainder is 23. More ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Big O Notation
Big ''O'' notation is a mathematical notation that describes the asymptotic analysis, limiting behavior of a function (mathematics), function when the Argument of a function, argument tends towards a particular value or infinity. Big O is a member of a #Related asymptotic notations, family of notations invented by German mathematicians Paul Gustav Heinrich Bachmann, Paul Bachmann, Edmund Landau, and others, collectively called Bachmann–Landau notation or asymptotic notation. The letter O was chosen by Bachmann to stand for '':wikt:Ordnung#German, Ordnung'', meaning the order of approximation. In computer science, big O notation is used to Computational complexity theory, classify algorithms according to how their run time or space requirements grow as the input size grows. In analytic number theory, big O notation is often used to express a bound on the difference between an arithmetic function, arithmetical function and a better understood approximation; one well-known exam ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Baby-step Giant-step
In group theory, a branch of mathematics, the baby-step giant-step is a meet-in-the-middle algorithm for computing the discrete logarithm or order of an element in a finite abelian group by Daniel Shanks. The discrete log problem is of fundamental importance to the area of public key cryptography. Many of the most commonly used cryptography systems are based on the assumption that the discrete log is extremely difficult to compute; the more difficult it is, the more security it provides a data transfer. One way to increase the difficulty of the discrete log problem is to base the cryptosystem on a larger group. Theory The algorithm is based on a space–time tradeoff. It is a fairly simple modification of trial multiplication, the naive method of finding discrete logarithms. Given a cyclic group G of order n, a generator \alpha of the group and a group element \beta, the problem is to find an integer x such that : \alpha^x = \beta\,. The baby-step giant-step algorithm is based ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lagrange's Theorem (group Theory)
In the mathematics, mathematical field of group theory, Lagrange's theorem states that if H is a subgroup of any finite group , then , H, is a divisor of , G, , i.e. the order of a group, order (number of elements) of every subgroup H divides the order of group G. The theorem is named after Joseph-Louis Lagrange. The following variant states that for a subgroup H of a finite group G, not only is , G, /, H, an integer, but its value is the index of a subgroup, index [G:H], defined as the number of left cosets of H in G. This variant holds even if G is infinite, provided that , G, , , H, , and [G:H] are interpreted as cardinal numbers. Proof The left cosets of in are the equivalence classes of a certain equivalence relation on : specifically, call and in equivalent if there exists in such that . Therefore, the set of left cosets forms a Partition of a set, partition of . Each left coset has the same cardinality as because x \mapsto ax defines a bijection H \to aH ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group (mathematics)
In mathematics, a group is a Set (mathematics), set with an Binary operation, operation that combines any two elements of the set to produce a third element within the same set and the following conditions must hold: the operation is Associative property, associative, it has an identity element, and every element of the set has an inverse element. For example, the integers with the addition, addition operation form a group. The concept of a group was elaborated for handling, in a unified way, many mathematical structures such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry, groups arise naturally in the study of symmetries and geometric transformations: The symmetries of an object form a group, called the symmetry group of the object, and the transformations of a given type form a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also cen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Martin Hellman
Martin Edward Hellman (born October 2, 1945) is an American cryptologist and mathematician, best known for his invention of public-key cryptography in cooperation with Whitfield Diffie and Ralph Merkle. Hellman is a longtime contributor to the computer privacy debate, and has applied risk analysis to a potential failure of nuclear deterrence. Hellman was elected a member of the National Academy of Engineering in 2002 for contributions to the theory and practice of cryptography. In 2016, he wrote a book with his wife, Dorothie Hellman, that links creating love at home to bringing peace to the planet (''A New Map for Relationships: Creating True Love at Home and Peace on the Planet''). Early life Born in New York to a Jewish family, Hellman graduated from the Bronx High School of Science. He went on to take his bachelor's degree in electrical engineering from New York University in 1966, and at Stanford University he received a master's degree and a Ph.D. in the discipline in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stephen Pohlig
Stephen C. Pohlig (1952/1953 in Washington, D.C. – April 14, 2017) was an American electrical engineer who worked in the MIT Lincoln Laboratory. As a graduate student of Martin Hellman's at Stanford University in the mid-1970s, he helped develop the underlying concepts of Diffie-Hellman key exchange, including the Pohlig–Hellman exponentiation cipher and the Pohlig–Hellman algorithm for computing discrete logarithms. That cipher can be regarded as a predecessor to the RSA (cryptosystem) The RSA (Rivest–Shamir–Adleman) cryptosystem is a public-key cryptosystem, one of the oldest widely used for secure data transmission. The initialism "RSA" comes from the surnames of Ron Rivest, Adi Shamir and Leonard Adleman, who publi ... since all that is needed to transform it into RSA is to change the arithmetic from modulo a prime number to modulo a composite number. In his spare time Stephen Pohlig was a keen kayaker known to many throughout the New England area. Pohlig d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]