HOME





Peculiar Star
In astrophysics, chemically peculiar stars (CP stars) are stars with distinctly unusual metal abundances, at least in their surface layers. Classification Chemically peculiar stars are common among hot main-sequence (hydrogen-burning) stars. These hot peculiar stars have been divided into four main classes on the basis of their spectra, although two classification systems are sometimes used: * non-magnetic metallic-lined (Am, CP1) * magnetic (Ap, CP2) * non-magnetic mercury-manganese (HgMn, CP3) * helium-weak (He-weak, CP4). The class names provide a good idea of the peculiarities that set them apart from other stars on or near the main sequence. The Am stars (CP1 stars) show weak lines of singly ionized Ca and/or Sc, but show enhanced abundances of heavy metals. They also tend to be slow rotators and have an effective temperature between 7000 and . The Ap stars (CP2 stars) are characterized by strong magnetic fields, enhanced abundances of elements such as Si, Cr, Sr and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Astrophysics
Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline, James Keeler, said, astrophysics "seeks to ascertain the nature of the heavenly bodies, rather than their positions or motions in space—''what'' they are, rather than ''where'' they are", which is studied in celestial mechanics. Among the subjects studied are the Sun ( solar physics), other stars, galaxies, extrasolar planets, the interstellar medium, and the cosmic microwave background. Emissions from these objects are examined across all parts of the electromagnetic spectrum, and the properties examined include luminosity, density, temperature, and chemical composition. Because astrophysics is a very broad subject, ''astrophysicists'' apply concepts and methods from many disciplines of physics, including classical mechanics, electromagnetism, statistical mechanics, thermodynamics, quantum ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

UBV Photometric System
__NOTOC__ The UBV photometric system (from ''Ultraviolet, Blue, Visual''), also called the Johnson system (or Johnson-Morgan system), is a photometric system usually employed for classifying stars according to their colors. It was the first standardized photometric system. The apparent magnitudes of stars in the system are often used to determine the color indices B−V and U−B, the difference between the B and V magnitudes and the U and B magnitudes respectively. The system is defined using a set of color optical filters in combination with an RMA 1P21 photomultiplier tube. The choice of colors on the blue end of the spectrum was assisted by the bias that photographic film has for those colors. It was introduced in the 1950s by American astronomers Harold Lester Johnson and William Wilson Morgan. A telescope and the telescope at McDonald Observatory were used to define the system. The filters that Johnson and Morgan used were Corning 9 863 for U and 3 384 for V. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mass Transfer
Mass transfer is the net movement of mass from one location (usually meaning stream, phase, fraction, or component) to another. Mass transfer occurs in many processes, such as absorption, evaporation, drying, precipitation, membrane filtration, and distillation. Mass transfer is used by different scientific disciplines for different processes and mechanisms. The phrase is commonly used in engineering for physical processes that involve diffusive and convective transport of chemical species within physical systems. Some common examples of mass transfer processes are the evaporation of water from a pond to the atmosphere, the purification of blood in the kidneys and liver, and the distillation of alcohol. In industrial processes, mass transfer operations include separation of chemical components in distillation columns, absorbers such as scrubbers or stripping, adsorbers such as activated carbon beds, and liquid-liquid extraction. Mass transfer is often coupled to addit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

S-type Star
An S-type star (or just S star) is a cool giant star with approximately equal quantities of carbon and oxygen in its atmosphere. The class was originally defined in 1922 by Paul Merrill for stars with unusual absorption lines and molecular bands now known to be due to s-process elements. The bands of zirconium monoxide (ZrO) are a defining feature of the S stars. The carbon stars have more carbon than oxygen in their atmospheres. In most stars, such as class M giants, the atmosphere is richer in oxygen than carbon and they are referred to as ''oxygen-rich stars''. S-type stars are intermediate between carbon stars and normal giants. They can be grouped into two classes: ''intrinsic'' S stars, which owe their spectra to convection of fusion products and s-process elements to the surface; and ''extrinsic'' S stars, which are formed through mass transfer in a binary system. The intrinsic S-type stars are on the most luminous portion of the asymptotic giant branch, a stage of thei ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Carbon Stars
A carbon star (C-type star) is typically an asymptotic giant branch star, a luminous red giant, whose atmosphere contains more carbon than oxygen. The two elements combine in the upper layers of the star, forming carbon monoxide, which consumes most of the oxygen in the atmosphere, leaving carbon atoms free to form other carbon compounds, giving the star a "sooty" atmosphere and a strikingly ruby red appearance. There are also some dwarf and supergiant carbon stars, with the more common giant stars sometimes being called classical carbon stars to distinguish them. In most stars (such as the Sun), the atmosphere is richer in oxygen than carbon. Ordinary stars not exhibiting the characteristics of carbon stars but cool enough to form carbon monoxide are therefore called oxygen-rich stars. Carbon stars have quite distinctive spectral characteristics, and they were first recognized by their spectra by Angelo Secchi in the 1860s, a pioneering time in astronomical spectroscopy. Spe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spectral Classification
''Spectral'' is a 2016 Hungarian-American military science fiction action film co-written and directed by Nic Mathieu. Written with Ian Fried & George Nolfi, the film stars James Badge Dale as DARPA research scientist Mark Clyne, with Max Martini, Emily Mortimer, Clayne Crawford, and Bruce Greenwood in supporting roles. The film is set in a civil war-ridden Moldova as invisible entities slaughter any living being caught in their path. The film was released worldwide on December 9, 2016 on Netflix. On February 1, 2017, Netflix released a prequel graphic novel of the film called ''Spectral: Ghosts of War'' which was made available digitally through the website ComiXology. Plot DARPA researcher Mark Clyne is sent to a US military airbase on the outskirts of Chișinău, to consult his created line of hyperspectral imaging goggles issued to US Army Special Forces led by Army General James Orland, who is covertly supporting the Moldovan government in an ongoing civi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Stark Effect
The Stark effect is the shifting and splitting of spectral lines of atoms and molecules due to the presence of an external electric field. It is the electric-field analogue of the Zeeman effect, where a spectral line is split into several components due to the presence of the magnetic field. Although initially coined for the static case, it is also used in the wider context to describe the effect of time-dependent electric fields. In particular, the Stark effect is responsible for the pressure broadening (Stark broadening) of spectral lines by charged particles in plasmas. For most spectral lines, the Stark effect is either linear (proportional to the applied electric field) or quadratic with a high accuracy. The Stark effect can be observed both for emission and absorption lines. The latter is sometimes called the inverse Stark effect, but this term is no longer used in the modern literature. History The effect is named after the German physicist Johannes Stark, who discov ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Absorption Line
Absorption spectroscopy is spectroscopy that involves techniques that measure the absorption (electromagnetic radiation), absorption of electromagnetic radiation, as a function of frequency or wavelength, due to its interaction with a sample. The sample absorbs energy, i.e., photons, from the radiating field. The intensity of the absorption varies as a function of frequency, and this variation is the #Absorption spectrum, absorption spectrum. Absorption spectroscopy is performed across the electromagnetic spectrum. Absorption spectroscopy is employed as an analytical chemistry tool to determine the presence of a particular substance in a sample and, in many cases, to quantify the amount of the substance present. Infrared spectroscopy, Infrared and ultraviolet–visible spectroscopy are particularly common in analytical applications. Absorption spectroscopy is also employed in studies of molecular and atomic physics, astronomical spectroscopy and remote sensing. There is a wide r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Balmer Line
The Balmer series, or Balmer lines in atomic physics, is one of a set of six named series describing the spectral line emissions of the hydrogen atom. The Balmer series is calculated using the Balmer formula, an empirical equation discovered by Johann Balmer in 1885. The visible spectrum of light from hydrogen displays four wavelengths, 410  nm, 434 nm, 486 nm, and 656 nm, that correspond to emissions of photons by electrons in excited states transitioning to the quantum level described by the principal quantum number ''n'' equals 2. There are several prominent ultraviolet Balmer lines with wavelengths shorter than 400 nm. The series continues with an infinite number of lines whose wavelengths asymptotically approach the limit of 364.5 nm in the ultraviolet. After Balmer's discovery, five other hydrogen spectral series were discovered, corresponding to electrons transitioning to values of ''n'' other than two. Overview The Balmer series is c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

λ Boötis Star
Lambda (; uppercase , lowercase ; , ''lám(b)da'') is the eleventh letter of the Greek alphabet, representing the voiced alveolar lateral approximant . In the system of Greek numerals, lambda has a value of 30. Lambda is derived from the Phoenician Lamed. Lambda gave rise to the Latin L and the Cyrillic El (Л). The ancient grammarians and dramatists give evidence to the pronunciation as () in Classical Greek times. In Modern Greek, the name of the letter, Λάμδα, is pronounced . In early Greek alphabets, the shape and orientation of lambda varied. Most variants consisted of two straight strokes, one longer than the other, connected at their ends. The angle might be in the upper-left, lower-left ("Western" alphabets) or top ("Eastern" alphabets). Other variants had a vertical line with a horizontal or sloped stroke running to the right. With the general adoption of the Ionic alphabet, Greek settled on an angle at the top; the Romans put the angle at the lower-left. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Iron Peak
The iron peak is a local maximum in the vicinity of Iron, Fe (Chromium, Cr, Manganese, Mn, Fe, Cobalt, Co and Nickel, Ni) on the graph of the abundances of the chemical elements. For elements lighter than iron on the periodic table, nuclear fusion exothermic, releases energy. For iron, and for all of the heavier elements, nuclear fusion endothermic, consumes energy. Chemical elements up to the iron peak are produced in ordinary stellar nucleosynthesis, with the alpha elements being particularly abundant. Some heavier elements are produced by less efficient processes such as the r-process and s-process. Elements with atomic numbers close to iron are produced in large quantities in Supernova, supernovae due to explosive Oxygen-burning process, oxygen and Silicon-burning process, silicon fusion, followed by radioactive decay of nuclei such as Nickel-56. On average, heavier elements are less abundant in the universe, but some of those near iron are comparatively more abundant than w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Molecular Cloud
A molecular cloud—sometimes called a stellar nursery if star formation is occurring within—is a type of interstellar cloud of which the density and size permit absorption nebulae, the formation of molecules (most commonly molecular hydrogen, H2), and the formation of H II regions. This is in contrast to other areas of the interstellar medium that contain predominantly ionized gas. Molecular hydrogen is difficult to detect by infrared and radio observations, so the molecule most often used to determine the presence of H2 is carbon monoxide (CO). The ratio between CO luminosity and H2 mass is thought to be constant, although there are reasons to doubt this assumption in observations of some other galaxies. Within molecular clouds are regions with higher density, where much dust and many gas cores reside, called clumps. These clumps are the beginning of star formation if gravitational forces are sufficient to cause the dust and gas to collapse. Research and discovery The histo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]