
An S-type star (or just S star) is a cool
giant
In folklore, giants (from Ancient Greek: ''wiktionary:gigas, gigas'', cognate wiktionary:giga-, giga-) are beings of humanoid appearance, but are at times prodigious in size and strength or bear an otherwise notable appearance. The word ''gia ...
star with approximately equal quantities of
carbon
Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
and
oxygen
Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
in its atmosphere. The class was originally defined in 1922 by
Paul Merrill for stars with unusual
absorption line
Absorption spectroscopy is spectroscopy that involves techniques that measure the absorption (electromagnetic radiation), absorption of electromagnetic radiation, as a function of frequency or wavelength, due to its interaction with a sample. Th ...
s and
molecular bands now known to be due to
s-process elements. The bands of
zirconium monoxide (ZrO) are a defining feature of the S stars.
The
carbon star
A carbon star (C-type star) is typically an asymptotic giant branch star, a luminous red giant, whose Stellar atmosphere, atmosphere contains more carbon than oxygen. The two elements combine in the upper layers of the star, forming carbon monox ...
s have more carbon than oxygen in their atmospheres. In most stars, such as class M giants, the atmosphere is richer in oxygen than carbon and they are referred to as ''oxygen-rich stars''. S-type stars are intermediate between carbon stars and normal giants. They can be grouped into two classes: ''intrinsic'' S stars, which owe their spectra to
convection
Convection is single or Multiphase flow, multiphase fluid flow that occurs Spontaneous process, spontaneously through the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoy ...
of fusion products and
s-process
The slow neutron-capture process, or ''s''-process, is a series of nuclear reactions, reactions in nuclear astrophysics that occur in stars, particularly asymptotic giant branch stars. The ''s''-process is responsible for the creation (nucleosynt ...
elements to the surface; and ''extrinsic'' S stars, which are formed through
mass transfer
Mass transfer is the net movement of mass from one location (usually meaning stream, phase, fraction, or component) to another. Mass transfer occurs in many processes, such as absorption, evaporation, drying, precipitation, membrane filtra ...
in a
binary
Binary may refer to:
Science and technology Mathematics
* Binary number, a representation of numbers using only two values (0 and 1) for each digit
* Binary function, a function that takes two arguments
* Binary operation, a mathematical op ...
system.
The intrinsic S-type stars are on the most luminous portion of the
asymptotic giant branch
The asymptotic giant branch (AGB) is a region of the Hertzsprung–Russell diagram populated by evolved cool luminous stars. This is a period of stellar evolution undertaken by all low- to intermediate-mass stars (about 0.5 to 8 solar masses) lat ...
, a stage of their lives lasting less than a million years. Many are
long period variable stars. The extrinsic S stars are less luminous and longer-lived, often smaller-amplitude
semiregular or
irregular variables. S stars are relatively rare, with intrinsic S stars forming less than 10% of
asymptotic giant branch
The asymptotic giant branch (AGB) is a region of the Hertzsprung–Russell diagram populated by evolved cool luminous stars. This is a period of stellar evolution undertaken by all low- to intermediate-mass stars (about 0.5 to 8 solar masses) lat ...
stars of comparable luminosity, while extrinsic S stars form an even smaller proportion of all red giants.
Spectral features
Cool stars, particularly
class M, show molecular bands, with
titanium(II) oxide
Titanium(II) oxide ( Ti O) is an inorganic chemical compound of titanium and oxygen. It can be prepared from titanium dioxide and titanium metal at 1500 °C. It is non-stoichiometric in a range TiO0.7 to TiO1.3 and this is caused by vacancie ...
(TiO) especially strong. A small proportion of these cool stars also show correspondingly strong bands of zirconium oxide (ZrO). The existence of clearly detectable ZrO bands in visual spectra is the definition of an S-type star.
[
The main ZrO ]series
Series may refer to:
People with the name
* Caroline Series (born 1951), English mathematician, daughter of George Series
* George Series (1920–1995), English physicist
Arts, entertainment, and media
Music
* Series, the ordered sets used i ...
are:[
* α series, in the blue at 464.06 nm, 462.61 nm, and 461.98 nm
* β series, in the yellow at 555.17 nm and 571.81 nm
* γ series, in the red at 647.4 nm, 634.5 nm, and 622.9 nm][
The original definition of an S star was that the ZrO bands should be easily detectable on low dispersion photographic spectral plates, but more modern spectra allow identification of many stars with much weaker ZrO. MS stars, intermediate with normal class M stars, have barely detectable ZrO but otherwise normal class M spectra. SC stars, intermediate with carbon stars, have weak or undetectable ZrO, but strong ]sodium
Sodium is a chemical element; it has Symbol (chemistry), symbol Na (from Neo-Latin ) and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 element, group 1 of the peri ...
D lines and detectable but weak C2 bands.[
S star spectra also show other differences to those of normal M class giants. The characteristic TiO bands of cool giants are weakened in most S stars, compared to M stars of similar temperature, and completely absent in some. Features related to s-process isotopes such as YO bands, Sr lines, Ba lines, and LaO bands, and also sodium D lines are all much stronger. However, VO bands are absent or very weak.][ The existence of spectral lines from the ]period 5 element
A period 5 element is one of the chemical elements in the fifth row (or period) of the periodic table of the chemical elements. The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behaviour of the el ...
technetium
Technetium is a chemical element; it has Symbol (chemistry), symbol Tc and atomic number 43. It is the lightest element whose isotopes are all radioactive. Technetium and promethium are the only radioactive elements whose neighbours in the sense ...
(Tc) is also expected as a result of the s-process neutron capture, but a substantial fraction of S stars show no sign of Tc. Stars with strong Tc lines are sometimes referred to as technetium stars, and they can be of class M, S, C, or the intermediate MS and SC.[
Some S stars, especially ]Mira variable
Mira variables (named for the prototype star Mira) are a class of pulsating stars characterized by very red colours, pulsation periods longer than 100 days, and amplitudes greater than one magnitude in infrared and 2.5 magnitude at visual wave ...
s, show strong hydrogen emission line
A spectral line is a weaker or stronger region in an otherwise uniform and continuous spectrum. It may result from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used ...
s. The Hβ emission is often unusually strong compared to other lines of the Balmer series
The Balmer series, or Balmer lines in atomic physics, is one of a set of hydrogen spectral series, six named series describing the spectral line emissions of the hydrogen atom. The Balmer series is calculated using the Balmer formula, an empiri ...
in a normal M star, but this is due to the weakness of the TiO band that would otherwise dilute the Hβ emission.[
]
Classification schemes
The spectral class S was first defined in 1922 to represent a number of long-period variables (meaning Mira variables) and stars with similar peculiar spectra. Many of the absorption lines in the spectra were recognised as unusual, but their associated elements were not known. The absorption bands now recognised as due to ZrO are clearly listed as major features of the S-type spectra. At that time, class M was not divided into numeric sub-classes, but into Ma, Mb, Mc, and Md. The new class S was simply left as either S or Se depending on the existence of emission lines. It was considered that the Se stars were all LPVs and the S stars were non-variable,[ but exceptions have since been found. For example, π1 Gruis is now known to be a ]semiregular variable
In astronomy, a semiregular variable star, a type of variable star, is a Red giant, giant or supergiant of intermediate and late (cooler) spectral type. It shows considerable periodicity in its light changes, accompanied or sometimes interrupted b ...
.[
The classification of S stars has been revised several times since its first introduction, to reflect advances in the resolution of available spectra, the discovery of greater numbers of S-type stars, and better understanding of the relationships between the various cool luminous giant spectral types.
]
Comma notation
The formalisation of S star classification in 1954 introduced a two-dimensional scheme of the form SX,Y. For example, R Andromedae is listed as S6,6e.[
X is the ''temperature class''. It is a digit between 1 (although the smallest type actually listed is S1.5) and 9, intended to represent a temperature scale corresponding approximately to the sequence of M1 to M9. The temperature class is actually calculated by estimating intensities for the ZrO and TiO bands, then summing the larger intensity with half the smaller intensity.][
Y is the ''abundance class''. It is also a digit between 1 and 9, assigned by multiplying the ratio of ZrO and TiO bands by the temperature class. This calculation generally yields a number which can be rounded down to give the abundance class digit, but this is modified for higher values:][
* 6.0 – 7.5 maps to 6
* 7.6 – 9.9 maps to 7
* 10.0 – 50 maps to 8
* > 50 maps to 9
In practice, spectral types for new stars would be assigned by referencing to the standard stars, since the intensity values are subjective and would be impossible to reproduce from spectra taken under different conditions.][
A number of drawbacks came to light as S stars were studied more closely and the mechanisms behind the spectra came to be understood. The strengths of the ZrO and TiO are influenced both by temperature and by actual abundances. The S stars represent a continuum from having oxygen slightly more abundant than carbon to carbon being slightly more abundant than oxygen. When carbon becomes more abundant than oxygen, the free oxygen is rapidly bound into CO and abundances of ZrO and TiO drop dramatically, making them a poor indicator in some stars. The ''abundance class'' also becomes unusable for stars with more carbon than oxygen in their atmospheres.][
This form of spectral type is a common type seen for S stars, possibly still the most common form.][
]
Elemental intensities
The first major revision of the classification for S stars completely abandons the single-digit abundance class in favour of explicit abundance intensities for Zr and Ti.[ So R And is listed, at a normal maximum, with a spectral type of S5e Zr5 Ti2.][
In 1979 Ake defined an ''abundance index'' based on the ZrO, TiO, and YO band intensities. This single digit between 1 and 7 was intended to represent the transition from MS stars through increasing C/O ratios to SC stars. Spectral types were still listed with explicit Zr and Ti intensity values, and the abundance index was included separately in the list of standard stars.][
]
Slash notation
The ''abundance index'' was immediately adopted and extended to run from 1 to 10, differentiating abundances in SC stars. It was now quoted as part of the spectral type in preference to separate Zr and Ti abundances. To distinguish it from the earlier abandoned abundance class it was used with a slash character after the temperature class, so that the spectral class for R And became S5/4.5e.[
The new abundance index is not calculated directly, but is assigned from the relative strengths of a number of spectral features. It is designed to closely indicate the sequence of C/O ratios from below 0.95 to about 1.1. Primarily the relative strength of ZrO and TiO bands forms a sequence from MS stars to abundance index 1 through 6. Abundance indices 7 to 10 are the SC stars and ZrO is weak or absent so the relative strength of the sodium D lines and Cs bands is used. Abundance index 0 is not used, and abundance index 10 is equivalent to a carbon star Cx,2 so it is also never seen.][
The derivation of the temperature class is also refined, to use line ratios in addition to the total ZrO and TiO strength. For MS stars and those with abundance index 1 or 2, the same TiO band strength criteria as for M stars can be applied. Ratios of different ZrO bands at 530.5 nm and 555.1 nm are useful with abundance indices 3 and 4, and the sudden appearance of LaO bands at cooler temperatures. The ratio of Ba and Sr lines is also useful at the same indices and for carbon-rich stars with abundance index 7 to 9. Where ZrO and TiO are weak or absent the ratio of the blended features at 645.6 nm and 645.0 nm can be used to assign the temperature class.][
]
Asterisk notation
With the different classification schemes and the difficulties of assigning a consistent class across the whole range of MS, S, and SC stars, other schemes are sometimes used. For example, one survey of new S/MS, carbon, and SC stars uses a two-dimensional scheme indicated by an asterisk, for example S5*3. The first digit is based on TiO strength to approximate the class M sequence, and the second is based solely on ZrO strength.[
]
Standard stars
This table shows the spectral types of a number of well-known S stars as they were classified at various times. Most of the stars are variable, usually of the Mira type. Where possible the table shows the type at maximum brightness, but several of the Ake types in particular are not at maximum brightness and so have a later type. ZrO and TiO band intensities are also shown if they are published (an x indicates that no bands were found). If the abundances are part of the formal spectral type then the abundance index is shown.
Formation
There are two distinct classes of S-type stars: intrinsic S stars; and extrinsic S stars. The presence of technetium
Technetium is a chemical element; it has Symbol (chemistry), symbol Tc and atomic number 43. It is the lightest element whose isotopes are all radioactive. Technetium and promethium are the only radioactive elements whose neighbours in the sense ...
is used to distinguish the two classes, only being found in the intrinsic S-type stars.
Intrinsic S stars
Intrinsic S-type stars are thermal pulsing asymptotic giant branch
The asymptotic giant branch (AGB) is a region of the Hertzsprung–Russell diagram populated by evolved cool luminous stars. This is a period of stellar evolution undertaken by all low- to intermediate-mass stars (about 0.5 to 8 solar masses) lat ...
(TP-AGB) stars. AGB stars have inert carbon-oxygen cores and undergo fusion both in an inner helium shell and an outer hydrogen shell. They are large cool M class giants. The thermal pulses, created by flashes from the helium shell, cause strong convection within the upper layers of the star. These pulses become stronger as the star evolves and in sufficiently massive stars the convection becomes deep enough to dredge up fusion products from the region between the two shells to the surface. These fusion products include carbon
Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
and s-process
The slow neutron-capture process, or ''s''-process, is a series of nuclear reactions, reactions in nuclear astrophysics that occur in stars, particularly asymptotic giant branch stars. The ''s''-process is responsible for the creation (nucleosynt ...
elements.[ The s-process elements include ]zirconium
Zirconium is a chemical element; it has Symbol (chemistry), symbol Zr and atomic number 40. First identified in 1789, isolated in impure form in 1824, and manufactured at scale by 1925, pure zirconium is a lustrous transition metal with a greyis ...
(Zr), yttrium
Yttrium is a chemical element; it has Symbol (chemistry), symbol Y and atomic number 39. It is a silvery-metallic transition metal chemically similar to the lanthanides and has often been classified as a "rare-earth element". Yttrium is almost a ...
(Y), lanthanum
Lanthanum is a chemical element; it has symbol La and atomic number 57. It is a soft, ductile, silvery-white metal that tarnishes slowly when exposed to air. It is the eponym of the lanthanide series, a group of 15 similar elements bet ...
(La), technetium (Tc), barium
Barium is a chemical element; it has symbol Ba and atomic number 56. It is the fifth element in group 2 and is a soft, silvery alkaline earth metal. Because of its high chemical reactivity, barium is never found in nature as a free element.
Th ...
(Ba), and strontium
Strontium is a chemical element; it has symbol Sr and atomic number 38. An alkaline earth metal, it is a soft silver-white yellowish metallic element that is highly chemically reactive. The metal forms a dark oxide layer when it is exposed to ...
(Sr), which form the characteristic S class spectrum with ZrO, YO, and LaO bands, as well as Tc, Sr, and Ba lines. The atmosphere of S stars has a carbon to oxygen ratio in the range 0.5 to < 1.[ Carbon enrichment continues with subsequent thermal pulses until the carbon abundance exceeds the oxygen abundance, at which point the oxygen in the atmosphere is rapidly locked into CO and formation of the oxides diminishes. These stars show intermediate SC spectra and further carbon enrichment leads to a ]carbon star
A carbon star (C-type star) is typically an asymptotic giant branch star, a luminous red giant, whose Stellar atmosphere, atmosphere contains more carbon than oxygen. The two elements combine in the upper layers of the star, forming carbon monox ...
.[
]
Extrinsic S stars
The technetium isotope produced by neutron capture in the s-process is 99Tc and it has a half life of around 200,000 years in a stellar atmosphere. Any of the isotope present when a star formed would have completely decayed by the time it became a giant, and any newly formed 99Tc dredged up in an AGB star would survive until the end of the AGB phase, making it difficult for a red giant to have other s-process elements in its atmosphere without technetium. S-type stars without technetium form by the transfer of technetium-rich matter, as well as other dredged-up elements, from an intrinsic S star in a binary system onto a smaller less-evolved companion. After a few hundred thousand years, the 99Tc will have decayed and a technetium-free star enriched with carbon and other s-process elements will remain. When this star is, or becomes, a G or K type red giant, it will be classified as a barium star. When it evolves to temperatures cool enough for ZrO absorption bands to show in the spectrum, approximately M class, it will be classified as an S-type star. These stars are called extrinsic S stars.[
]
Distribution and numbers
Stars with a spectral class of S only form under a narrow range of conditions and they are uncommon. The distributions and properties of intrinsic and extrinsic S stars are different, reflecting their different modes of formation.
TP-AGB stars are difficult to identify reliably in large surveys, but counts of normal M-class luminous AGB stars and similar S-type and carbon stars have shown different distributions in the galaxy. S stars are distributed in a similar way to carbon stars, but there are only around a third as many as the carbon stars. Both types of carbon-rich star are very rare near to the Galactic Center
The Galactic Center is the barycenter of the Milky Way and a corresponding point on the rotational axis of the galaxy. Its central massive object is a supermassive black hole of about 4 million solar masses, which is called Sagittarius A*, a ...
, but make up 10% – 20% of all the luminous AGB stars in the solar neighbourhood, so that S stars are around 5% of the AGB stars. The carbon-rich stars are also concentrated more closely in the galactic plane
The galactic plane is the plane (geometry), plane on which the majority of a disk-shaped galaxy's mass lies. The directions perpendicular to the galactic plane point to the galactic poles. In actual usage, the terms ''galactic plane'' and ''galac ...
. S-type stars make up a disproportionate number of Mira variable
Mira variables (named for the prototype star Mira) are a class of pulsating stars characterized by very red colours, pulsation periods longer than 100 days, and amplitudes greater than one magnitude in infrared and 2.5 magnitude at visual wave ...
s, 7% in one survey compared to 3% of all AGB stars.[
Extrinsic S stars are not on the TP-AGB, but are ]red giant branch
The red-giant branch (RGB), sometimes called the first giant branch, is the portion of the giant branch before helium ignition occurs in the course of stellar evolution. It is a stage that follows the main sequence for low- to intermediate-mass st ...
stars or early AGB stars. Their numbers and distribution are uncertain. They have been estimated to make up between 30% and 70% of all S-type stars, although only a tiny fraction of all red giant branch stars. They are less strongly concentrated in the galactic disc, indicating that they are from an older population of stars than the intrinsic group.[
]
Properties
Very few intrinsic S stars have had their mass directly measured using a binary orbit, although their masses have been estimated using Mira period-mass relations or pulsations properties. The observed masses were found to be around [ until very recently when ]Gaia
In Greek mythology, Gaia (; , a poetic form of ('), meaning 'land' or 'earth'),, , . also spelled Gaea (), is the personification of Earth. Gaia is the ancestral mother—sometimes parthenogenic—of all life. She is the mother of Uranus (S ...
parallaxes helped discover intrinsic S stars with solar-like masses and metallicities.[ Models of TP-AGB evolution show that the third dredge-up becomes larger as the shells move towards the surface, and that less massive stars experience fewer dredge-ups before leaving the AGB. Stars with masses of will experience enough dredge-ups to become carbon stars, but they will be large events and the star will usually skip straight past the crucial C/O ratio near 1 without becoming an S-type star. More massive stars reach equal levels of carbon and oxygen gradually during several small dredge-ups. Stars more than about experience hot bottom burning (the burning of carbon at the base of the convective envelope) which prevents them becoming carbon stars, but they may still become S-type stars before reverting to an oxygen-rich state.][ Extrinsic S stars are always in binary systems and their calculated masses are around . This is consistent with RGB stars or early AGB stars.][
Intrinsic S stars have luminosities around ,][ although they are usually variable.][ Their temperatures average about 2,300 K for the Mira S stars and 3,100 K for the non-Mira S stars, a few hundred K warmer than oxygen-rich AGB stars and a few hundred K cooler than carbon stars. Their radii average about for the Miras and for the non-miras, larger than oxygen-rich stars and smaller than carbon stars.][ Extrinsic S stars have luminosities typically around , temperatures between 3,150 and 4,000 K, and radii less than . This means they lie below the red giant tip and will typically be RGB stars rather than AGB stars.][
]
Mass loss and dust
Extrinsic S stars lose considerable mass through their stellar wind
A stellar wind is a flow of gas ejected from the stellar atmosphere, upper atmosphere of a star. It is distinguished from the bipolar outflows characteristic of young stars by being less collimated, although stellar winds are not generally spheri ...
s, similar to oxygen-rich TP-AGB stars and carbon stars. Typically the rates are around 1/10,000,000th the mass of the sun per year, although in extreme cases such as W Aquilae they can be more than ten times higher.[
It is expected that the existence of dust drives the mass loss in cool stars, but it is unclear what type of dust can form in the atmosphere of an S star with most carbon and oxygen locked into CO gas. The ]stellar wind
A stellar wind is a flow of gas ejected from the stellar atmosphere, upper atmosphere of a star. It is distinguished from the bipolar outflows characteristic of young stars by being less collimated, although stellar winds are not generally spheri ...
s of S stars are comparable to oxygen-rich and carbon-rich stars with similar physical properties. There is about 300 times more gas than dust observed in the circumstellar material around S stars. It is believed to be made up of metallic iron
Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
, FeSi, silicon carbide
Silicon carbide (SiC), also known as carborundum (), is a hard chemical compound containing silicon and carbon. A wide bandgap semiconductor, it occurs in nature as the extremely rare mineral moissanite, but has been mass-produced as a powder a ...
, and forsterite
Forsterite (Mg2SiO4; commonly abbreviated as Fo; also known as white olivine) is the magnesium-rich Endmember, end-member of the olivine solid solution series. It is Isomorphism (crystallography), isomorphous with the iron-rich end-member, fayalit ...
. Without silicate
A silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula , where . The family includes orthosilicate (), metasilicate (), and pyrosilicate (, ). The name is also used ...
s and carbon
Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
, it is believed that nucleation is triggered by TiC
A tic is a sudden and repetitive motor movement or vocalization that is not rhythmic and involves discrete muscle groups. Tics are typically brief and may resemble a normal behavioral characteristic or gesture.
Tics can be invisible to the obs ...
, ZrC, and TiO2.[
Detached dust shells are seen around a number of carbon stars, but not S-type stars. ]Infrared excess
An infrared excess is a measurement of an astronomical source, typically a star, that in their spectral energy distribution has a greater measured infrared flux than expected by assuming the star is a blackbody radiator. Infrared excesses are of ...
es indicate that there is dust around most intrinsic S stars, but the outflow has not been sufficient and longlasting enough to form a visible detached shell. The shells are thought to form during a superwind phase very late in the AGB evolution.[
]
Examples
BD Camelopardalis is a naked-eye example of an extrinsic S star. It is a slow irregular variable
A slow irregular variable (ascribed the GCVS types L, LB and LC) is a variable star that exhibit no or very poorly defined periodicity in their slowly changing light emissions. These stars have often been little-studied, and once more is learnt a ...
in a symbiotic binary system with a hotter companion which may also be variable.[
The ]Mira variable
Mira variables (named for the prototype star Mira) are a class of pulsating stars characterized by very red colours, pulsation periods longer than 100 days, and amplitudes greater than one magnitude in infrared and 2.5 magnitude at visual wave ...
Chi Cygni is an intrinsic S star. When near maximum light, it is the sky's brightest S-type star.[ It has a variable late type spectrum about S6 to S10, with features of zirconium, titanium and vanadium oxides, sometimes bordering on the intermediate MS type.][ A number of other prominent Mira variables such as R Andromedae and R Cygni are also S-type stars, as well as the peculiar ]semiregular variable
In astronomy, a semiregular variable star, a type of variable star, is a Red giant, giant or supergiant of intermediate and late (cooler) spectral type. It shows considerable periodicity in its light changes, accompanied or sometimes interrupted b ...
π1 Gruis.[
The naked-eye star ο1 Ori is an intermediate MS star and small amplitude semiregular variable][ with a DA3 white dwarf companion.][ The spectral type has been given as S3.5/1-,][ M3III(BaII),][ or M3.2IIIaS.][
]
References
{{Star
Star types