PEMDAS
In mathematics and computer programming, the order of operations is a collection of rules that reflect conventions about which operations to perform first in order to evaluate a given mathematical expression. These rules are formalized with a ranking of the operations. The rank of an operation is called its precedence, and an operation with a ''higher'' precedence is performed before operations with ''lower'' precedence. Calculators generally perform operations with the same precedence from left to right, but some programming languages and calculators adopt different conventions. For example, multiplication is granted a higher precedence than addition, and it has been this way since the introduction of modern algebraic notation. Thus, in the expression , the multiplication is performed before addition, and the expression has the value , and not . When exponents were introduced in the 16th and 17th centuries, they were given precedence over both addition and multiplication and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Multiplication
Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division (mathematics), division. The result of a multiplication operation is called a ''Product (mathematics), product''. Multiplication is often denoted by the cross symbol, , by the mid-line dot operator, , by juxtaposition, or, in programming languages, by an asterisk, . The multiplication of whole numbers may be thought of as repeated addition; that is, the multiplication of two numbers is equivalent to adding as many copies of one of them, the ''multiplicand'', as the quantity of the other one, the ''multiplier''; both numbers can be referred to as ''factors''. This is to be distinguished from term (arithmetic), ''terms'', which are added. :a\times b = \underbrace_ . Whether the first factor is the multiplier or the multiplicand may be ambiguous or depend upon context. For example, the expression 3 \times 4 , can be phrased as "3 ti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computer Programming
Computer programming or coding is the composition of sequences of instructions, called computer program, programs, that computers can follow to perform tasks. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing source code, code in one or more programming languages. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. Proficient programming usually requires expertise in several different subjects, including knowledge of the Domain (software engineering), application domain, details of programming languages and generic code library (computing), libraries, specialized algorithms, and Logic#Formal logic, formal logic. Auxiliary tasks accompanying and related to programming include Requirements analysis, analyzing requirements, Software testing, testing, debugging (investigating and fixing problems), imple ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Addition
Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol, +) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication, and Division (mathematics), division. The addition of two Natural number, whole numbers results in the total or ''summation, sum'' of those values combined. For example, the adjacent image shows two columns of apples, one with three apples and the other with two apples, totaling to five apples. This observation is expressed as , which is read as "three plus two Equality (mathematics), equals five". Besides counting items, addition can also be defined and executed without referring to concrete objects, using abstractions called numbers instead, such as integers, real numbers, and complex numbers. Addition belongs to arithmetic, a branch of mathematics. In algebra, another area of mathematics, addition can also be performed on abstract objects such as Euclidean vector, vec ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bc Programming Language
bc for ''basic calculator'', is "an arbitrary-precision calculator language" with syntax similar to the C programming language. bc is typically used as either a mathematical scripting language or as an interactive mathematical shell. Overview A typical interactive usage is typing the command bc on a Unix command prompt and entering a mathematical expression, such as , whereupon will be output. While bc can work with arbitrary precision, it actually defaults to zero digits after the decimal point, so the expression yields (results are truncated, not rounded). This can surprise new bc users unaware of this fact. The option to bc sets the default ''scale'' (digits after the decimal point) to 20 and adds several additional mathematical functions to the language. History bc first appeared in Version 6 Unix in 1975. It was written by Lorinda Cherry of Bell Labs as a front end to dc, an arbitrary-precision calculator written by Robert Morris and Cherry. dc performed arbitrary-p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
PlanMaker
PlanMaker is a spreadsheet, spreadsheet program that is part of the SoftMaker Office, SoftMaker Office suite. It is available on Microsoft Windows, MacOS, Linux and Android (operating system), Android and iOS. PlanMaker is largely similar to Microsoft Excel in function and workflow and uses the same file format .xlsx. The syntax of the formulas is identical, Pivot table, pivot tables are possible. Furthermore it can import SQLite databases. Macros and VBA scripts contained in .xlsm cannot be executed, but are retained when saving. BasicMaker provides a VBA-like scripting language under Windows for SoftMaker Office. References External links SoftMaker's PlanMaker for Windows, Linux and MacOSSoftMaker's PlanMaker for Android and iOS {{Spreadsheets Android (operating system) software Spreadsheet software Presentation software for Windows Linux software Windows Mobile software ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Microsoft Excel
Microsoft Excel is a spreadsheet editor developed by Microsoft for Microsoft Windows, Windows, macOS, Android (operating system), Android, iOS and iPadOS. It features calculation or computation capabilities, graphing tools, pivot tables, and a macro (computer science), macro programming language called Visual Basic for Applications (VBA). Excel forms part of the Microsoft 365 and Microsoft Office suites of software and has been developed since 1985. Features Basic operation Microsoft Excel has the basic features of all spreadsheets, using a grid of ''cells'' arranged in numbered ''rows'' and letter-named ''columns'' to organize data manipulations like arithmetic operations. It has a battery of supplied functions to answer statistical, engineering, and financial needs. In addition, it can display data as line graphs, histograms and charts, and with a very limited three-dimensional graphical display. It allows sectioning of data to view its dependencies on various factors ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Unary Operation
In mathematics, a unary operation is an operation with only one operand, i.e. a single input. This is in contrast to ''binary operations'', which use two operands. An example is any function , where is a set; the function is a unary operation on . Common notations are prefix notation (e.g. ¬, −), postfix notation (e.g. factorial ), functional notation (e.g. or ), and superscripts (e.g. transpose ). Other notations exist as well, for example, in the case of the square root, a horizontal bar extending the square root sign over the argument can indicate the extent of the argument. Examples Absolute value Obtaining the absolute value of a number is a unary operation. This function is defined as , n, = \begin n, & \mbox n\geq0 \\ -n, & \mbox n<0 \end where is the absolute value of . Negation [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monomial
In mathematics, a monomial is, roughly speaking, a polynomial which has only one term. Two definitions of a monomial may be encountered: # A monomial, also called a power product or primitive monomial, is a product of powers of variables with nonnegative integer exponents, or, in other words, a product of variables, possibly with repetitions. For example, x^2yz^3=xxyzzz is a monomial. The constant 1 is a primitive monomial, being equal to the empty product and to x^0 for any variable x. If only a single variable x is considered, this means that a monomial is either 1 or a power x^n of x, with n a positive integer. If several variables are considered, say, x, y, z, then each can be given an exponent, so that any monomial is of the form x^a y^b z^c with a,b,c non-negative integers (taking note that any exponent 0 makes the corresponding factor equal to 1). # A monomial in the first sense multiplied by a nonzero constant, called the coefficient of the monomial. A primitive monomial ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vinculum (symbol)
\overline = 0. \overline Y = \overline \sqrt[n] a-\overline = a − (b + c) bracketing function Vinculum usage A vinculum () is a horizontal line used in mathematical notation for various purposes. It may be placed as an ''overline'' or ''underline'' above or below a mathematical expression to group the expression's elements. Historically, vincula were extensively used to group items together, especially in written mathematics, but in modern mathematics its use for this purpose has almost entirely been replaced by the use of parentheses. It was also used to Roman numerals#Vinculum, mark Roman numerals whose values are multiplied by 1,000. Today, however, the common usage of a vinculum to indicate the repetend of a repeating decimal is a significant exception and reflects the original usage. History The vinculum, in its general use, was introduced by Frans van Schooten in 1646 as he edited the works of François Viète (who had himself not used this notation). However, ea ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Radical Symbol
In mathematics, the radical symbol, radical sign, root symbol, or surd is a symbol for the square root or higher-order root of a number. The square root of a number is written as :\sqrt, while the th root of is written as :\sqrt It is also used for other meanings in more advanced mathematics, such as the radical of an ideal. In linguistics, the symbol is used to denote a root word. Principal square root Each positive real number has two square roots, one positive and the other negative. The radical symbol refers to the principal value of the square root function called the principal square root, which is the positive one. The two square roots of a negative number are both imaginary numbers, and the square root symbol refers to the principal square root, the one with a positive imaginary part. For the definition of the principal square root of other complex numbers, see . Origin The origin of the root symbol √ is largely speculative. Some sources imply that the symbol ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Additive Inverse
In mathematics, the additive inverse of an element , denoted , is the element that when added to , yields the additive identity, 0 (zero). In the most familiar cases, this is the number 0, but it can also refer to a more generalized zero element. In elementary mathematics, the additive inverse is often referred to as the opposite number, or its negative. The unary operation of arithmetic negation is closely related to '' subtraction'' and is important in solving algebraic equations. Not all sets where addition is defined have an additive inverse, such as the natural numbers. Common examples When working with integers, rational numbers, real numbers, and complex numbers, the additive inverse of any number can be found by multiplying it by −1. The concept can also be extended to algebraic expressions, which is often used when balancing equations. Relation to subtraction The additive inverse is closely related to subtraction, which can be viewed as an add ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |