PCBM
PCBM ( ,6phenyl-C61-butyric acid methyl ester) is a fullerene derivative being investigated for its potential use in organic solar cells. PCBM is a fullerene derivative of the C60 buckyball that was first synthesized in the 1990s. It is an electron acceptor material and is often used in organic solar cells (plastic solar cells) or flexible electronics in conjunction with electron donor materials such as P3HT or other conductive polymers. It is a more practical choice for an electron acceptor when compared with fullerenes because of its solubility in chlorobenzene. This allows for solution processable donor/acceptor mixes, a necessary property for "printable" solar cells. However, considering the cost of fabricating fullerenes, it is not certain that this derivative can be synthesized on a large scale for commercial applications. See also *Organic solar cell An organic solar cell (OSC) or plastic solar cell is a type of photovoltaic that uses organic electronics, a branch ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Common Berthing Mechanism
The Common Mechanism (CBM) connects habitable elements in the US Orbital Segment (USOS) of the International Space Station (ISS). The CBM has two distinct sides that, once mated, form a cylindrical wiktionary:vestibule, vestibule between modules. The vestibule is about long and across. At least one end of the vestibule is often limited in diameter by a smaller wiktionary:bulkhead, bulkhead penetration. The elements are maneuvered to the berthing-ready position by a . Latches and bolts on the active CBM (ACBM) side pull wiktionary:fitting#Nouns, fittings and nut plate, floating nuts on the passive CBM (PCBM) side to align and join the two. After the vestibule is pressurized, crew members clear a passage between modules by removing some CBM components. Utility connectors are installed between facing bulkheads, with a closeout panel to cover them. The resulting tunnel can be used as a loading dock, loading bay, admitting large payloads from visiting cargo spacecraft that would no ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Organic Solar Cell
An organic solar cell (OSC) or plastic solar cell is a type of photovoltaic that uses organic electronics, a branch of electronics that deals with conductive organic polymers or small organic molecules, for light absorption and charge transport to produce electricity from sunlight by the photovoltaic effect. Most organic photovoltaic cells are polymer solar cells. The molecules used in organic solar cells are solution-processable at high throughput and are cheap, resulting in low production costs to fabricate a large volume. Combined with the flexibility of organic molecules, organic solar cells are potentially cost-effective for photovoltaic applications. Molecular engineering (''e.g.,'' changing the length and functional group of polymers) can change the band gap, allowing for electronic tunability. The optical absorption coefficient of organic molecules is high, so a large amount of light can be absorbed with a small amount of materials, usually on the order of hundreds of na ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Solar Cells
A solar cell, also known as a photovoltaic cell (PV cell), is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect.Solar Cells chemistryexplained.com It is a type of photoelectric cell, a device whose electrical characteristics (such as current, , or resistance) vary when it is exposed to light. Individual solar cell devices are often the electrical building blocks of [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fullerenes
A fullerene is an allotrope of carbon whose molecules consist of carbon atoms connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to six atoms. The molecules may have hollow sphere- and ellipsoid-like forms, tubes, or other shapes. Fullerenes with a closed mesh topology are informally denoted by their empirical formula C''n'', often written C''n'', where ''n'' is the number of carbon atoms. However, for some values of ''n'' there may be more than one isomer. The family is named after buckminsterfullerene (C60), the most famous member, which in turn is named after Buckminster Fuller. The closed fullerenes, especially C60, are also informally called buckyballs for their resemblance to the standard ball of association football. Nested closed fullerenes have been named bucky onions. Cylindrical fullerenes are also called carbon nanotubes or buckytubes. The bulk solid form of pure or mixed fullerenes is called fuller ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fullerene Chemistry
Fullerene chemistry is a field of organic chemistry devoted to the chemical properties of fullerenes. Research in this field is driven by the need to functionalize fullerenes and tune their properties. For example, fullerene is notoriously insoluble and adding a suitable group can enhance solubility. By adding a polymerizable group, a fullerene polymer can be obtained. Functionalized fullerenes are divided into two classes: exohedral fullerenes with substituents outside the cage and endohedral fullerenes with trapped molecules inside the cage. This article covers the chemistry of these so-called "buckyballs," while the chemistry of carbon nanotubes is covered in carbon nanotube chemistry. Chemical properties of fullerenes Fullerene or C60 is soccer-ball-shaped or ''Ih'' with 12 pentagons and 20 hexagons. According to Euler's theorem these 12 pentagons are required for closure of the carbon network consisting of ''n'' hexagons and C60 is the first stable fullerene because it ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Organic Compound
Some chemical authorities define an organic compound as a chemical compound that contains a carbon–hydrogen or carbon–carbon bond; others consider an organic compound to be any chemical compound that contains carbon. For example, carbon-containing compounds such as alkanes (e.g. methane ) and its derivatives are universally considered organic, but many others are sometimes considered inorganic, such as certain compounds of carbon with nitrogen and oxygen (e.g. cyanide ion , hydrogen cyanide , chloroformic acid , carbon dioxide , and carbonate ion ). Due to carbon's ability to catenate (form chains with other carbon atoms), millions of organic compounds are known. The study of the properties, reactions, and syntheses of organic compounds comprise the discipline known as organic chemistry. For historical reasons, a few classes of carbon-containing compounds (e.g., carbonate salts and cyanide salts), along with a few other exceptions (e.g., carbon dioxide, and even ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fullerene Derivative
Fullerene chemistry is a field of organic chemistry devoted to the chemical properties of fullerenes. Research in this field is driven by the need to functionalize fullerenes and tune their properties. For example, fullerene is notoriously insoluble and adding a suitable group can enhance solubility. By adding a polymerizable group, a fullerene polymer can be obtained. Functionalized fullerenes are divided into two classes: exohedral fullerenes with substituents outside the cage and endohedral fullerenes with trapped molecules inside the cage. This article covers the chemistry of these so-called "buckyballs," while the chemistry of carbon nanotubes is covered in carbon nanotube chemistry. Chemical properties of fullerenes Fullerene or C60 is soccer-ball-shaped or ''Ih'' with 12 pentagons and 20 hexagons. According to Euler's theorem these 12 pentagons are required for closure of the carbon network consisting of ''n'' hexagons and C60 is the first stable fullerene because it ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Buckyball (molecule)
Buckminsterfullerene is a type of fullerene with the formula . It has a cage-like fused-ring structure ( truncated icosahedron) made of twenty hexagons and twelve pentagons, and resembles a football. Each of its 60 carbon atoms is bonded to its three neighbors. Buckminsterfullerene is a black solid that dissolves in hydrocarbon solvents to produce a violet solution. The substance was discovered in 1985 and has received intense study, although few real world applications have been found. Molecules of buckminsterfullerene (or of fullerenes in general) are commonly nicknamed buckyballs. Occurrence Buckminsterfullerene is the most common naturally occurring fullerene. Small quantities of it can be found in soot. It also exists in space. Neutral has been observed in planetary nebulae and several types of star. The ionised form, , has been identified in the interstellar medium, where it is the cause of several absorption features known as diffuse interstellar bands in the ne ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electron Acceptor
An electron acceptor is a chemical entity that accepts electrons transferred to it from another compound. Electron acceptors are oxidizing agents. The electron accepting power of an electron acceptor is measured by its redox potential. In the simplest case, electron acceptors are reduced by one electron. The process can alter the structure of the acceptor substantially. When the added electron is highly delocalized, the structural consequences of the reduction can be subtle. The central C-C distance in the electron acceptor tetracyanoethylene elongates from 135 to 143 pm upon acceptance of an electron. In the formation of some donor-acceptor complexes, less than one electron is transferred. TTF-TCNQ is a charge transfer complex. Biology In biology, a ''terminal electron acceptor'' often refers to either the last compound to receive an electron in an electron transport chain, such as oxygen during cellular respiration, or the last cofactor to receive an electron within ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electron Donor
In chemistry, an electron donor is a chemical entity that transfers electrons to another compound. It is a reducing agent that, by virtue of its donating electrons, is itself oxidized in the process. An obsolete definition equated an electron donor and a Lewis base. In contrast to traditional reducing agents, electron transfer from a donor to an electron acceptor may be only fractional. The electron is not completely transferred, which results in an Delocalized electron, electron resonance between the donor and acceptor. This leads to the formation of charge transfer complexes, in which the components largely retain their chemical identities. The electron donating power of a donor molecule is measured by its ionization potential, which is the energy required to remove an electron from the highest occupied molecular orbital (HOMO and LUMO, HOMO). The overall energy balance (ΔE), i.e., energy gained or lost, in an electron donor-acceptor transfer is determined by the difference bet ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
P3HT
Polythiophenes (PTs) are polymerized thiophenes, a sulfur heterocycle. The parent PT is an insoluble colored solid with the formula (C4H2S)n.Strictly speaking, "polythiophene" is a misnomer, since the polymer consists of thienylene (2,5-C4H2S) repeat units. Similarly, thiophene is not a monomer as such. The rings are linked through the 2- and 5-positions. Poly(alkylthiophene)s have alkyl substituents at the 3- or 4-position(s). They are also colored solids, but tend to be soluble in organic solvents. PTs become conductive when oxidized. The electrical conductivity results from the delocalization of electrons along the polymer backbone. Conductivity however is not the only interesting property resulting from electron delocalization. The optical properties of these materials respond to environmental stimuli, with dramatic color shifts in response to changes in solvent, temperature, applied potential, and binding to other molecules. Changes in both color and conductivity ar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |