HOME
*





Order Of Integration
In statistics, the order of integration, denoted ''I''(''d''), of a time series is a summary statistic, which reports the minimum number of differences required to obtain a covariance-stationary series. Integration of order ''d'' A time series is integrated of order ''d'' if :(1-L)^d X_t \ is a stationary process, where L is the lag operator and 1-L is the first difference, i.e. : (1-L) X_t = X_t - X_ = \Delta X. In other words, a process is integrated to order ''d'' if taking repeated differences ''d'' times yields a stationary process. In particular, if a series is integrated of order 0, then (1-L)^0 X_t = X_t is stationary. Constructing an integrated series An ''I''(''d'') process can be constructed by summing an ''I''(''d'' − 1) process: *Suppose X_t is ''I''(''d'' − 1) *Now construct a series Z_t = \sum_^t X_k *Show that ''Z'' is ''I''(''d'') by observing its first-differences are ''I''(''d'' − 1): :: \Delta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistics
Statistics (from German language, German: ''wikt:Statistik#German, Statistik'', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of statistical survey, surveys and experimental design, experiments.Dodge, Y. (2006) ''The Oxford Dictionary of Statistical Terms'', Oxford University Press. When census data cannot be collected, statisticians collect data by developing specific experiment designs and survey sample (statistics), samples. Representative sampling as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Time Series
In mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time. Thus it is a sequence of discrete-time data. Examples of time series are heights of ocean tides, counts of sunspots, and the daily closing value of the Dow Jones Industrial Average. A time series is very frequently plotted via a run chart (which is a temporal line chart). Time series are used in statistics, signal processing, pattern recognition, econometrics, mathematical finance, weather forecasting, earthquake prediction, electroencephalography, control engineering, astronomy, communications engineering, and largely in any domain of applied science and engineering which involves temporal measurements. Time series ''analysis'' comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series ''forecasting' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Summary Statistics
In descriptive statistics, summary statistics are used to summarize a set of observations, in order to communicate the largest amount of information as simply as possible. Statisticians commonly try to describe the observations in * a measure of location, or central tendency, such as the arithmetic mean * a measure of statistical dispersion like the standard deviation, standard mean absolute deviation * a measure of the shape of the distribution like skewness or kurtosis * if more than one variable is measured, a measure of correlation and dependence, statistical dependence such as a Pearson product-moment correlation coefficient, correlation coefficient A common collection of order statistics used as summary statistics are the five-number summary, sometimes extended to a seven-number summary, and the associated box plot. Entries in an analysis of variance table can also be regarded as summary statistics. Examples Location Common measures of location, or central tendency, are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stationary Process
In mathematics and statistics, a stationary process (or a strict/strictly stationary process or strong/strongly stationary process) is a stochastic process whose unconditional joint probability distribution does not change when shifted in time. Consequently, parameters such as mean and variance also do not change over time. If you draw a line through the middle of a stationary process then it should be flat; it may have 'seasonal' cycles, but overall it does not trend up nor down. Since stationarity is an assumption underlying many statistical procedures used in time series analysis, non-stationary data are often transformed to become stationary. The most common cause of violation of stationarity is a trend in the mean, which can be due either to the presence of a unit root or of a deterministic trend. In the former case of a unit root, stochastic shocks have permanent effects, and the process is not mean-reverting. In the latter case of a deterministic trend, the process is called ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lag Operator
In time series analysis, the lag operator (L) or backshift operator (B) operates on an element of a time series to produce the previous element. For example, given some time series :X= \ then : L X_t = X_ for all t > 1 or similarly in terms of the backshift operator ''B'': B X_t = X_ for all t > 1. Equivalently, this definition can be represented as : X_t = L X_ for all t \geq 1 The lag operator (as well as backshift operator) can be raised to arbitrary integer powers so that : L^ X_ = X_ and : L^k X_ = X_. Lag polynomials Polynomials of the lag operator can be used, and this is a common notation for ARMA (autoregressive moving average) models. For example, : \varepsilon_t = X_t - \sum_^p \varphi_i X_ = \left(1 - \sum_^p \varphi_i L^i\right) X_t specifies an AR(''p'') model. A polynomial of lag operators is called a lag polynomial so that, for example, the ARMA model can be concisely specified as : \varphi (L) X_t = \theta (L) \varepsilon_t where \varphi (L) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

ARIMA
Arima, officially The Royal Chartered Borough of Arima is the easternmost and second largest in area of the three boroughs of Trinidad and Tobago. It is geographically adjacent to Sangre Grande and Arouca at the south central foothills of the Northern Range. To the south is the Caroni–Arena Dam. Coterminous with Town of Arima since 1888, the borough of Arima is the fourth-largest municipality in population in the country (after Port of Spain, Chaguanas and San Fernando). The census estimated it had 33,606 residents in 2011. In 1887, the town petitioned Queen Victoria for municipal status as part of her Golden Jubilee celebration. This was granted in the following year, and Arima became a Royal Borough on 1 August 1888. Historically the third-largest town of Trinidad and Tobago, Arima is fourth since Chaguanas became the largest town in the country. Geography Climate The borough has a tropical rainforest climate (Köppen ''Af''), bordering on a tropical monsoon climate, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Autoregressive–moving-average Model
In the statistical analysis of time series, autoregressive–moving-average (ARMA) models provide a parsimonious description of a (weakly) stationary stochastic process in terms of two polynomials, one for the autoregression (AR) and the second for the moving average (MA). The general ARMA model was described in the 1951 thesis of Peter Whittle, ''Hypothesis testing in time series analysis'', and it was popularized in the 1970 book by George E. P. Box and Gwilym Jenkins. Given a time series of data X_t, the ARMA model is a tool for understanding and, perhaps, predicting future values in this series. The AR part involves regressing the variable on its own lagged (i.e., past) values. The MA part involves modeling the error term as a linear combination of error terms occurring contemporaneously and at various times in the past. The model is usually referred to as the ARMA(''p'',''q'') model where ''p'' is the order of the AR part and ''q'' is the order of the MA part (as defined b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Random Walk
In mathematics, a random walk is a random process that describes a path that consists of a succession of random steps on some mathematical space. An elementary example of a random walk is the random walk on the integer number line \mathbb Z which starts at 0, and at each step moves +1 or −1 with equal probability. Other examples include the path traced by a molecule as it travels in a liquid or a gas (see Brownian motion), the search path of a foraging animal, or the price of a fluctuating stock and the financial status of a gambler. Random walks have applications to engineering and many scientific fields including ecology, psychology, computer science, physics, chemistry, biology, economics, and sociology. The term ''random walk'' was first introduced by Karl Pearson in 1905. Lattice random walk A popular random walk model is that of a random walk on a regular lattice, where at each step the location jumps to another site according to some probability distribution. In a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unit Root Test
In statistics, a unit root test tests whether a time series variable is non-stationary and possesses a unit root. The null hypothesis is generally defined as the presence of a unit root and the alternative hypothesis is either Stationary process, stationarity, Trend-stationary process, trend stationarity or explosive root depending on the test used. General approach In general, the approach to unit root testing implicitly assumes that the time series to be tested [y_t]_^T can be written as, :y_t = D_t + z_t + \varepsilon_t where, * D_t is the deterministic component (trend, seasonal component, etc.) * z_t is the stochastic component. * \varepsilon_t is the stationary error process. The task of the test is to determine whether the stochastic component contains a unit root or is stationary. Main tests Other popular tests include: * augmented Dickey–Fuller test *: this is valid in large samples. * Phillips–Perron test * KPSS test *: here the null hypothesis is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]