Order-8 Hexagonal Tiling
   HOME
*



picture info

Order-8 Hexagonal Tiling
In geometry, the order-8 hexagonal tiling is a List_of_regular_polytopes#Hyperbolic_tilings, regular tiling of the Hyperbolic geometry, hyperbolic plane. It has Schläfli symbol of . Uniform constructions There are four uniform constructions of this tiling, three of them as constructed by mirror removal from the [8,6] kaleidoscope. Removing the mirror between the order 2 and 6 points, [6,8,1+], gives [(6,6,4)], (*664). Removing the mirror between the order 8 and 6 points, [6,1+,8], gives (*4232). Removing two mirrors as [6,8*], leaves remaining mirrors (*33333333). Symmetry This tiling represents a hyperbolic kaleidoscope of 4 mirrors meeting as edges of a square, with eight squares around every vertex. This symmetry by orbifold notation is called (*444444) with 6 order-4 mirror intersections. In Coxeter notation can be represented as [8,6*], removing two of three mirrors (passing through the square center) in the 862 symmetry, [8,6] symmetry. Related polyhedra and tiling ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a ''geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geometries ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE