Oriented Circle
   HOME



picture info

Oriented Circle
The Laguerre transformations or axial homographies are an analogue of Möbius transformations over the dual numbers. Originally published as ''Kompleksnye Chisla i Ikh Primenenie v Geometrii'' (in Russian). Moscow: Fizmatgiz. 1963 When studying these transformations, the dual numbers are often interpreted as representing oriented lines on the plane. The Laguerre transformations map lines to lines, and include in particular all Euclidean group, isometries of the plane. Strictly speaking, these transformations act on the Dual number#Projective line, dual number projective line, which adjoins to the dual numbers a set of points at infinity. Topologically, this projective line is equivalent to a cylinder. Points on this cylinder are in a natural one-to-one correspondence with oriented line (geometry), lines on the plane. Definition A Laguerre transformation is a linear fractional transformation z\mapsto\frac where a,b,c,d are all dual numbers, z lies on the dual number projective ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Möbius Transformation
In geometry and complex analysis, a Möbius transformation of the complex plane is a rational function of the form f(z) = \frac of one complex number, complex variable ; here the coefficients , , , are complex numbers satisfying . Geometrically, a Möbius transformation can be obtained by first applying the inverse stereographic projection from the plane to the unit sphere, moving and rotating the sphere to a new location and orientation in space, and then applying a stereographic projection to map from the sphere back to the plane. These transformations preserve angles, map every straight line to a line or circle, and map every circle to a line or circle. The Möbius transformations are the projective transformations of the complex projective line. They form a group (mathematics), group called the Möbius group, which is the projective linear group . Together with its subgroups, it has numerous applications in mathematics and physics. Möbius geometry, Möbius geometries and t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Perpendicular Distance
In geometry, the perpendicular distance between two objects is the distance from one to the other, measured along a line that is perpendicular to one or both. The distance from a point to a line is the distance to the nearest point on that line. That is the point at which a segment from it to the given point is perpendicular to the line. Likewise, the distance from a point to a curve is measured by a line segment that is perpendicular to a tangent line to the curve at the nearest point on the curve. The distance from a point to a plane is measured as the length from the point along a segment that is perpendicular to the plane, meaning that it is perpendicular to all lines in the plane that pass through the nearest point in the plane to the given point. Other instances include: *'' Point on plane closest to origin'', for the perpendicular distance from the origin to a plane in three-dimensional space *'' Nearest distance between skew lines'', for the perpendicular distance b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isaak Yaglom
Isaak Moiseevich Yaglom (; 6 March 1921 – 17 April 1988) was a Soviet mathematician and author of popular mathematics books, some with his twin Akiva Yaglom. Yaglom received a Ph.D. from Moscow State University in 1945 as student of Veniamin Kagan. As the author of several books, translated into English, that have become academic standards of reference, he has an international stature. His attention to the necessities of learning (pedagogy) make his books pleasing experiences for students. The seven authors of his Russian obituary recount "…the breadth of his interests was truly extraordinary: he was seriously interested in history and philosophy, passionately loved and had a good knowledge of literature and art, often came forward with reports and lectures on the most diverse topics (for example, on Alexander Blok, Anna Akhmatova, and the Dutch painter M. C. Escher), actively took part in the work of the cinema club in Yaroslavl and the music club at the House of Composer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sign
A sign is an object, quality, event, or entity whose presence or occurrence indicates the probable presence or occurrence of something else. A natural sign bears a causal relation to its object—for instance, thunder is a sign of storm, or medical symptoms a sign of disease. A conventional sign signifies by agreement, as a full stop signifies the end of a sentence; similarly the words and expressions of a language, as well as bodily gestures, can be regarded as signs, expressing particular meanings. The physical objects most commonly referred to as signs (notices, road signs, etc., collectively known as signage) generally inform or instruct using written text, symbols, pictures or a combination of these. The philosophical study of signs and symbols is called semiotics; this includes the study of semiosis, which is the way in which signs (in the semiotic sense) operate. Nature Semiotics, epistemology, logic, and philosophy of language are concerned about the nature of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trace (linear Algebra)
In linear algebra, the trace of a square matrix , denoted , is the sum of the elements on its main diagonal, a_ + a_ + \dots + a_. It is only defined for a square matrix (). The trace of a matrix is the sum of its eigenvalues (counted with multiplicities). Also, for any matrices and of the same size. Thus, similar matrices have the same trace. As a consequence, one can define the trace of a linear operator mapping a finite-dimensional vector space into itself, since all matrices describing such an operator with respect to a basis are similar. The trace is related to the derivative of the determinant (see Jacobi's formula). Definition The trace of an square matrix is defined as \operatorname(\mathbf) = \sum_^n a_ = a_ + a_ + \dots + a_ where denotes the entry on the row and column of . The entries of can be real numbers, complex numbers, or more generally elements of a field . The trace is not defined for non-square matrices. Example Let be a matrix, with \m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Skew-Hermitian
__NOTOC__ In linear algebra, a square matrix with complex entries is said to be skew-Hermitian or anti-Hermitian if its conjugate transpose is the negative of the original matrix. That is, the matrix A is skew-Hermitian if it satisfies the relation where A^\textsf denotes the conjugate transpose of the matrix A. In component form, this means that for all indices i and j, where a_ is the element in the i-th row and j-th column of A, and the overline denotes complex conjugation. Skew-Hermitian matrices can be understood as the complex versions of real skew-symmetric matrices, or as the matrix analogue of the purely imaginary numbers., §4.1.2 The set of all skew-Hermitian n \times n matrices forms the u(n) Lie algebra, which corresponds to the Lie group U(n). The concept can be generalized to include linear transformations of any complex vector space with a sesquilinear norm. Note that the adjoint of an operator depends on the scalar product considered on the n dimens ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lie Sphere Geometry
Lie sphere geometry is a geometrical theory of planar or spatial geometry in which the fundamental concept is the circle or sphere. It was introduced by Sophus Lie in the nineteenth century. The main idea which leads to Lie sphere geometry is that lines (or planes) should be regarded as circles (or spheres) of infinite radius and that points in the plane (or space) should be regarded as circles (or spheres) of zero radius. The space of circles in the plane (or spheres in space), including points and lines (or planes) turns out to be a manifold known as the Lie quadric (a quadric hypersurface in projective space). Lie sphere geometry is the geometry of the Lie quadric and the Lie transformations which preserve it. This geometry can be difficult to visualize because Lie transformations do not preserve points in general: points can be transformed into circles (or spheres). To handle this, curves in the plane and surfaces in space are studied using their contact lifts, which are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Möbius Geometry
In mathematics, conformal geometry is the study of the set of angle-preserving ( conformal) transformations on a space. In a real two dimensional space, conformal geometry is precisely the geometry of Riemann surfaces. In space higher than two dimensions, conformal geometry may refer either to the study of conformal transformations of what are called "flat spaces" (such as Euclidean spaces or spheres), or to the study of conformal manifolds which are Riemannian or pseudo-Riemannian manifolds with a class of metrics that are defined up to scale. Study of the flat structures is sometimes termed Möbius geometry, and is a type of Klein geometry. Conformal manifolds A conformal manifold is a Riemannian manifold (or pseudo-Riemannian manifold) equipped with an equivalence class of metric tensors, in which two metrics ''g'' and ''h'' are equivalent if and only if :h = \lambda^2 g , where ''λ'' is a real-valued smooth function defined on the manifold and is called the conformal facto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Clockwise
Two-dimensional rotation can occur in two possible directions or senses of rotation. Clockwise motion (abbreviated CW) proceeds in the same direction as a clock's hands relative to the observer: from the top to the right, then down and then to the left, and back up to the top. The opposite sense of rotation or revolution is (in Commonwealth English) anticlockwise (ACW) or (in North American English) counterclockwise (CCW). Three-dimensional rotation can have similarly defined senses when considering the corresponding angular velocity vector. Terminology Before clocks were commonplace, the terms " sunwise" and "deasil", "deiseil" and even "deocil" from the Scottish Gaelic language and from the same root as the Latin "dexter" ("right") were used for clockwise. " Widdershins" or "withershins" (from Middle Low German "weddersinnes", "opposite course") was used for counterclockwise. The terms clockwise and counterclockwise can only be applied to a rotational motion once a side ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Anti-clockwise
Two-dimensional rotation can occur in two possible directions or senses of rotation. Clockwise motion (abbreviated CW) proceeds in the same direction as a clock's hands relative to the observer: from the top to the right, then down and then to the left, and back up to the top. The opposite sense of rotation or revolution is (in Commonwealth English) anticlockwise (ACW) or (in North American English) counterclockwise (CCW). Three-dimensional rotation can have similarly defined senses when considering the corresponding angular velocity vector. Terminology Before clocks were commonplace, the terms "sunwise" and "deasil", "deiseil" and even "deocil" from the Scottish Gaelic language and from the same root as the Latin "dexter" ("right") were used for clockwise. "Widdershins" or "withershins" (from Middle Low German "weddersinnes", "opposite course") was used for counterclockwise. The terms clockwise and counterclockwise can only be applied to a rotational motion once a side of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orientation (vector Space)
The orientation of a real vector space or simply orientation of a vector space is the arbitrary choice of which ordered bases are "positively" oriented and which are "negatively" oriented. In the three-dimensional Euclidean space, right-handed bases are typically declared to be positively oriented, but the choice is arbitrary, as they may also be assigned a negative orientation. A vector space with an orientation selected is called an oriented vector space, while one not having an orientation selected, is called . In mathematics, '' orientability'' is a broader notion that, in two dimensions, allows one to say when a cycle goes around clockwise or counterclockwise, and in three dimensions when a figure is left-handed or right-handed. In linear algebra over the real numbers, the notion of orientation makes sense in arbitrary finite dimension, and is a kind of asymmetry that makes a reflection impossible to replicate by means of a simple displacement. Thus, in three dimensi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]