Optimization Toolbox
Optimization Toolbox is an optimization software package developed by MathWorks. It is an add-on product to MATLAB, and provides a library of solvers that can be used from the MATLAB environment. The toolbox was first released for MATLAB in 1990. Optimization algorithms Optimization Toolbox has algorithms for: * Linear programming * Mixed-integer linear programming * Quadratic programming * Nonlinear programming * Linear least squares * Nonlinear least squares * Nonlinear equation solving * Multi-objective optimization Applications Engineering Optimization Optimization Toolbox solvers are used for engineering applications in MATLAB, such as optimal control and optimal mechanical designs. Parameter Estimation Optimization can help with fitting a model to data, where the goal is to identify the model parameters that minimize the difference between simulated and experimental data. Common parameter estimation problems that are solved with Optimization Toolbox includ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
MathWorks
MathWorks is an American privately held corporation that specializes in mathematical computing software. Its major products include MATLAB and Simulink, which support data analysis and simulation. History The company's key product, MATLAB, was created in the 1970s by Cleve Moler, who was chairman of the computer science department at the University of New Mexico at the time. It was a free tool for academics. Jack Little, who would eventually set up the company, came across the tool while he was a graduate student in electrical engineering at Stanford University. Little and Steve Bangert rewrote the code for MATLAB in C while they were colleagues at an engineering firm. They founded MathWorks along with Moler in 1984, with Little running it out of his house in Portola Valley, California. Little would mail diskettes in baggies (food storage bags) to the first customers. The company sold its first order, 10 copies of MATLAB, for $500 to the Massachusetts Institute of Technolog ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Least Squares (mathematics)
Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals. Numerical methods for linear least squares include inverting the matrix of the normal equations and orthogonal decomposition methods. Main formulations The three main linear least squares formulations are: * Ordinary least squares (OLS) is the most common estimator. OLS estimates are commonly used to analyze both experimental and observational data. The OLS method minimizes the sum of squared residuals, and leads to a closed-form expression for the estimated value of the unknown parameter vector ''β'': \hat = (\mathbf^\mathsf\mathbf)^ \mathbf^\mathsf \mathbf, where \mathbf is a vector whose ''i''th element is the ''i''th observation of the dependent variable, and \mathbf is a matrix whose ''ij ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cashflow Matching
Cash flow matching is a process of hedging in which a company or other entity matches its cash outflows (i.e., financial obligations) with its cash inflows over a given time horizon. It is a subset of immunization strategies in finance. Cash flow matching is of particular importance to defined benefit pension plans. Solution with linear programming It is possible to solve the simple cash flow matching problem using linear programming. Suppose that we have a choice of j=1,...,n bonds with which to receive cash flows over t=1,...,T time periods in order to cover liabilities L_,...,L_ for each time period. The jth bond in time period t is assumed to have known cash flows F_ and initial price p_. It possible to buy x_ bonds and to run a surplus s_ in a given time period, both of which must be non-negative, and leads to the set of constraints:\begin \sum_^F_x_ - s_ &= L_ \\ \sum_^F_x_ + s_ - s_ &= L_, \quad t = 2,...,T \endOur goal is to minimize the initial cost of purchasing bonds t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Portfolio Optimization
Portfolio optimization is the process of selecting the best portfolio (asset distribution), out of the set of all portfolios being considered, according to some objective. The objective typically maximizes factors such as expected return, and minimizes costs like financial risk. Factors being considered may range from tangible (such as assets, liabilities, earnings or other fundamentals) to intangible (such as selective divestment). Modern portfolio theory Modern portfolio theory was introduced in a 1952 doctoral thesis by Harry Markowitz; see Markowitz model. It assumes that an investor wants to maximize a portfolio's expected return contingent on any given amount of risk. For portfolios that meet this criterion, known as efficient portfolios, achieving a higher expected return requires taking on more risk, so investors are faced with a trade-off between risk and expected return. This risk-expected return relationship of efficient portfolios is graphically represented by a curve ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ordinary Differential Equations
In mathematics, an ordinary differential equation (ODE) is a differential equation whose unknown(s) consists of one (or more) function(s) of one variable and involves the derivatives of those functions. The term ''ordinary'' is used in contrast with the term partial differential equation which may be with respect to ''more than'' one independent variable. Differential equations A linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form :a_0(x)y +a_1(x)y' + a_2(x)y'' +\cdots +a_n(x)y^+b(x)=0, where , ..., and are arbitrary differentiable functions that do not need to be linear, and are the successive derivatives of the unknown function of the variable . Among ordinary differential equations, linear differential equations play a prominent role for several reasons. Most elementary and special functions that are encountered in physics and applied mathemati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Optimal Control
Optimal control theory is a branch of mathematical optimization that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. It has numerous applications in science, engineering and operations research. For example, the dynamical system might be a spacecraft with controls corresponding to rocket thrusters, and the objective might be to reach the moon with minimum fuel expenditure. Or the dynamical system could be a nation's economy, with the objective to minimize unemployment; the controls in this case could be fiscal and monetary policy. A dynamical system may also be introduced to embed operations research problems within the framework of optimal control theory. Optimal control is an extension of the calculus of variations, and is a mathematical optimization method for deriving control policies. The method is largely due to the work of Lev Pontryagin and Richard Bellman in the 1950s, after contributions to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Multi-objective Optimization
Multi-objective optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, multiattribute optimization or Pareto optimization) is an area of multiple criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously. Multi-objective optimization has been applied in many fields of science, including engineering, economics and logistics where optimal decisions need to be taken in the presence of trade-offs between two or more conflicting objectives. Minimizing cost while maximizing comfort while buying a car, and maximizing performance whilst minimizing fuel consumption and emission of pollutants of a vehicle are examples of multi-objective optimization problems involving two and three objectives, respectively. In practical problems, there can be more than three objectives. For a nontrivial multi-objective optimization problem, no single soluti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Non-linear Least Squares
Non-linear least squares is the form of least squares analysis used to fit a set of ''m'' observations with a model that is non-linear in ''n'' unknown parameters (''m'' ≥ ''n''). It is used in some forms of nonlinear regression. The basis of the method is to approximate the model by a linear one and to refine the parameters by successive iterations. There are many similarities to linear least squares, but also some significant differences. In economic theory, the non-linear least squares method is applied in (i) the probit regression, (ii) threshold regression, (iii) smooth regression, (iv) logistic link regression, (v) Box-Cox transformed regressors (m(x,\theta_i) = \theta_1 + \theta_2 x^). Theory Consider a set of m data points, (x_1, y_1), (x_2, y_2), \dots, (x_m, y_m), and a curve (model function) \hat = f(x, \boldsymbol \beta), that in addition to the variable x also depends on n parameters, \boldsymbol \beta = (\beta_1, \beta_2, \dots, \beta_n), with m\ge n. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nonlinear Programming
In mathematics, nonlinear programming (NLP) is the process of solving an optimization problem where some of the constraints or the objective function are nonlinear. An optimization problem is one of calculation of the extrema (maxima, minima or stationary points) of an objective function over a set of unknown real variables and conditional to the satisfaction of a system of equalities and inequalities, collectively termed constraints. It is the sub-field of mathematical optimization that deals with problems that are not linear. Applicability A typical non-convex problem is that of optimizing transportation costs by selection from a set of transportation methods, one or more of which exhibit economies of scale, with various connectivities and capacity constraints. An example would be petroleum product transport given a selection or combination of pipeline, rail tanker, road tanker, river barge, or coastal tankship. Owing to economic batch size the cost functions may have disconti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cross-platform
In computing, cross-platform software (also called multi-platform software, platform-agnostic software, or platform-independent software) is computer software that is designed to work in several computing platforms. Some cross-platform software requires a separate build for each platform, but some can be directly run on any platform without special preparation, being written in an interpreted language or compiled to portable bytecode for which the interpreters or run-time packages are common or standard components of all supported platforms. For example, a cross-platform application may run on Microsoft Windows, Linux, and macOS. Cross-platform software may run on many platforms, or as few as two. Some frameworks for cross-platform development are Codename One, Kivy, Qt, Flutter, NativeScript, Xamarin, Phonegap, Ionic, and React Native. Platforms ''Platform'' can refer to the type of processor (CPU) or other hardware on which an operating system (OS) or applicatio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quadratic Programming
Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions. Specifically, one seeks to optimize (minimize or maximize) a multivariate quadratic function subject to linear constraints on the variables. Quadratic programming is a type of nonlinear programming. "Programming" in this context refers to a formal procedure for solving mathematical problems. This usage dates to the 1940s and is not specifically tied to the more recent notion of "computer programming." To avoid confusion, some practitioners prefer the term "optimization" — e.g., "quadratic optimization." Problem formulation The quadratic programming problem with variables and constraints can be formulated as follows. Given: * a real-valued, -dimensional vector , * an -dimensional real symmetric matrix , * an -dimensional real matrix , and * an -dimensional real vector , the objective of quadratic programming is to find an -dimensional vector , that ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integer Programming
An integer programming problem is a mathematical optimization or feasibility program in which some or all of the variables are restricted to be integers. In many settings the term refers to integer linear programming (ILP), in which the objective function and the constraints (other than the integer constraints) are linear. Integer programming is NP-complete. In particular, the special case of 0-1 integer linear programming, in which unknowns are binary, and only the restrictions must be satisfied, is one of Karp's 21 NP-complete problems. If some decision variables are not discrete, the problem is known as a mixed-integer programming problem. Canonical and standard form for ILPs In integer linear programming, the ''canonical form'' is distinct from the ''standard form''. An integer linear program in canonical form is expressed thus (note that it is the \mathbf vector which is to be decided): : \begin & \text && \mathbf^\mathrm \mathbf\\ & \text && A \mathbf \le \mathbf, \\ & ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |