HOME





On Formally Undecidable Propositions Of Principia Mathematica And Related Systems
"Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I" ("On Formally Undecidable Propositions of Principia Mathematica and Related Systems I") is a paper in mathematical logic by Kurt Gödel. Submitted November 17, 1930, it was originally published in German in the 1931 volume of '' Monatshefte für Mathematik.'' Several English translations have appeared in print, and the paper has been included in two collections of classic mathematical logic papers. The paper contains Gödel's incompleteness theorems, now fundamental results in logic that have many implications for consistency proofs in mathematics. The paper is also known for introducing new techniques that Gödel invented to prove the incompleteness theorems. Outline and key results The main results established are Gödel's first and second incompleteness theorems, which have had an enormous impact on the field of mathematical logic. These appear as theorems VI and XI, respectively, in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and analysis. In the early 20th century it was shaped by David Hilbert's program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in proving consistency. Work in set theory s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


John W
John is a common English name and surname: * John (given name) * John (surname) John may also refer to: New Testament Works * Gospel of John, a title often shortened to John * First Epistle of John, often shortened to 1 John * Second Epistle of John, often shortened to 2 John * Third Epistle of John, often shortened to 3 John People * John the Baptist (died c. AD 30), regarded as a prophet and the forerunner of Jesus Christ * John the Apostle (lived c. AD 30), one of the twelve apostles of Jesus * John the Evangelist, assigned author of the Fourth Gospel, once identified with the Apostle * John of Patmos, also known as John the Divine or John the Revelator, the author of the Book of Revelation, once identified with the Apostle * John the Presbyter, a figure either identified with or distinguished from the Apostle, the Evangelist and John of Patmos Other people with the given name Religious figures * John, father of Andrew the Apostle and Saint Peter * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Works Originally Published In Science And Technology Magazines
Works may refer to: People * Caddy Works (1896–1982), American college sports coach * Samuel Works (c. 1781–1868), New York politician Albums * '' ''Works'' (Pink Floyd album)'', a Pink Floyd album from 1983 * ''Works'', a Gary Burton album from 1972 * ''Works'', a Status Quo album from 1983 * ''Works'', a John Abercrombie album from 1991 * ''Works'', a Pat Metheny album from 1994 * ''Works'', an Alan Parson Project album from 2002 * ''Works Volume 1'', a 1977 Emerson, Lake & Palmer album * ''Works Volume 2'', a 1977 Emerson, Lake & Palmer album * '' The Works'', a 1984 Queen album Other uses * Microsoft Works, a collection of office productivity programs created by Microsoft * IBM Works, an office suite for the IBM OS/2 operating system * Mount Works, Victoria Land, Antarctica See also * The Works (other) The Works may refer to: Music * ''The Works'' (Queen album), 1984 album by the British rock band Queen * ''The Works'' (Nik Kershaw album), 1989 album b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

1931 Documents
Events January * January 2 – South Dakota native Ernest Lawrence invents the cyclotron, used to accelerate particles to study nuclear physics. * January 4 – German pilot Elly Beinhorn begins her flight to Africa. * January 22 – Sir Isaac Isaacs is sworn in as the first Australian-born Governor-General of Australia. * January 25 – Mohandas Gandhi is again released from imprisonment in India. * January 27 – Pierre Laval forms a government in France. February * February 4 – Soviet leader Joseph Stalin gives a speech calling for rapid industrialization, arguing that only strong industrialized countries will win wars, while "weak" nations are "beaten". Stalin states: "We are fifty or a hundred years behind the advanced countries. We must make good this distance in ten years. Either we do it, or they will crush us." The first five-year plan in the Soviet Union is intensified, for the industrialization and collectivization of agriculture. * February 10 – O ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




1931 In Science
The year 1931 in science and technology involved some significant events, listed below. Astronomy * French astronomer Bernard Lyot invents the coronagraph. Chemistry * Erich Hückel proposes Hückel's rule, which explains when a planar ring molecule will have aromatic properties. * Harold Urey and associates at Columbia University demonstrate the existence of heavy water. Earth sciences * Modified Mercalli intensity scale introduced as a seismic scale for earthquakes in the United States. History of science * Het Nederlandsch Historisch Natuurwetenschappelijk Museum ("The Dutch Historical Museum of the Natural Sciences") opens in Leiden. Mathematics * January – Kurt Gödel's " On Formally Undecidable Propositions..." is published in ''Monatshefte für Mathematik''. Physics * November 26 – Harold Urey discovers deuterium by the fractional distillation of liquid hydrogen. * Ernst Ruska and Max Knoll build the first prototype electron microscope. * Paul Dirac proposes that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics Papers
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and analysis. In the early 20th century it was shaped by David Hilbert's program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in proving consistency. Work in set theory s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Solomon Feferman
Solomon Feferman (December 13, 1928 – July 26, 2016) was an American philosopher and mathematician who worked in mathematical logic. Life Solomon Feferman was born in The Bronx in New York City to working-class parents who had immigrated to the United States after World War I and had met and married in New York. Neither parent had any advanced education. The family moved to Los Angeles, where Feferman graduated from high school at age 16. He received his B.S. from the California Institute of Technology in 1948, and in 1957 his Ph.D. in mathematics from the University of California, Berkeley, under Alfred Tarski, after having been drafted and having served in the U.S. Army from 1953 to 1955. In 1956 he was appointed to the Departments of Mathematics and Philosophy at Stanford University, where he later became the Patrick Suppes Professor of Humanities and Sciences. Feferman died on 26 July 2016 at his home in Stanford, following an illness that lasted three months and a str ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jacques Herbrand
Jacques Herbrand (12 February 1908 – 27 July 1931) was a French mathematician. Although he died at age 23, he was already considered one of "the greatest mathematicians of the younger generation" by his professors Helmut Hasse and Richard Courant. He worked in mathematical logic and class field theory. He introduced recursive functions. '' Herbrand's theorem'' refers to either of two completely different theorems. One is a result from his doctoral thesis in proof theory, and the other one half of the Herbrand–Ribet theorem. The Herbrand quotient is a type of Euler characteristic, used in homological algebra. He contributed to Hilbert's program in the foundations of mathematics by providing a constructive consistency proof for a weak system of arithmetic. The proof uses the above-mentioned, proof-theoretic Herbrand's theorem. Biography Herbrand finished his doctorate at École Normale Supérieure in Paris under Ernest Vessiot in 1929. He joined the army in October 1929 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Stephen Kleene
Stephen Cole Kleene ( ; January 5, 1909 – January 25, 1994) was an American mathematician. One of the students of Alonzo Church, Kleene, along with Rózsa Péter, Alan Turing, Emil Post, and others, is best known as a founder of the branch of mathematical logic known as recursion theory, which subsequently helped to provide the foundations of theoretical computer science. Kleene's work grounds the study of computable functions. A number of mathematical concepts are named after him: Kleene hierarchy, Kleene algebra, the Kleene star (Kleene closure), Kleene's recursion theorem and the Kleene fixed-point theorem. He also invented regular expressions in 1951 to describe McCulloch-Pitts neural networks, and made significant contributions to the foundations of mathematical intuitionism. Biography Kleene was awarded a bachelor's degree from Amherst College in 1930. He was awarded a Ph.D. in mathematics from Princeton University in 1934, where his thesis, entitled ''A Theory of P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alonzo Church
Alonzo Church (June 14, 1903 – August 11, 1995) was an American mathematician, computer scientist, logician, philosopher, professor and editor who made major contributions to mathematical logic and the foundations of theoretical computer science. He is best known for the lambda calculus, the Church–Turing thesis, proving the unsolvability of the Entscheidungsproblem, the Frege–Church ontology, and the Church–Rosser theorem. He also worked on philosophy of language (see e.g. Church 1970). Alongside his student Alan Turing, Church is considered one of the founders of computer science. Life Alonzo Church was born on June 14, 1903, in Washington, D.C., where his father, Samuel Robbins Church, was a Justice of the Peace and the judge of the Municipal Court for the District of Columbia. He was the grandson of Alonzo Webster Church (1829-1909), United States Senate Librarian from 1881-1901, and great grandson of Alonzo Church, a Professor of Mathematics and Astronomy an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]