Octonion
In mathematics, the octonions are a normed division algebra over the real numbers, a kind of Hypercomplex number, hypercomplex Number#Classification, number system. The octonions are usually represented by the capital letter O, using boldface or blackboard bold \mathbb O. Octonions have eight dimension (vector space), dimensions; twice the number of dimensions of the quaternions, of which they are an extension. They are commutative property, noncommutative and associative property, nonassociative, but satisfy a weaker form of associativity; namely, they are alternative algebra, alternative. They are also Power associativity, power associative. Octonions are not as well known as the quaternions and complex numbers, which are much more widely studied and used. Octonions are related to exceptional structures in mathematics, among them the Simple Lie group#Exceptional cases, exceptional Lie groups. Octonions have applications in fields such as string theory, special relativity and qu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cayley–Dickson Construction
In mathematics, the Cayley–Dickson construction, sometimes also known as the Cayley–Dickson process or the Cayley–Dickson procedure produces a sequence of algebra over a field, algebras over the field (mathematics), field of real numbers, each with twice the dimension of a vector space, dimension of the previous one. It is named after Arthur Cayley and Leonard Eugene Dickson. The algebras produced by this process are known as Cayley–Dickson algebras, for example complex numbers, quaternions, and octonions. These examples are useful composition algebras frequently applied in mathematical physics. The Cayley–Dickson construction defines a new algebra as a Cartesian product of an algebra with itself, with multiplication defined in a specific way (different from the componentwise operation, componentwise multiplication) and an involution (mathematics), involution known as ''conjugation''. The product of an element and its complex conjugate, conjugate (or sometimes the square ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hypercomplex Number
In mathematics, hypercomplex number is a traditional term for an element (mathematics), element of a finite-dimensional Algebra over a field#Unital algebra, unital algebra over a field, algebra over the field (mathematics), field of real numbers. The study of hypercomplex numbers in the late 19th century forms the basis of modern group representation theory. History In the nineteenth century, number systems called quaternions, tessarines, coquaternions, biquaternions, and octonions became established concepts in mathematical literature, extending the real and complex numbers. The concept of a hypercomplex number covered them all, and called for a discipline to explain and classify them. The cataloguing project began in 1872 when Benjamin Peirce first published his ''Linear Associative Algebra'', and was carried forward by his son Charles Sanders Peirce. Most significantly, they identified the nilpotent and the idempotent element (ring theory), idempotent elements as useful ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sedenion
In abstract algebra, the sedenions form a 16-dimension of a vector space, dimensional commutative property, noncommutative and associative property, nonassociative algebra over a field, algebra over the real numbers, usually represented by the capital letter S, boldface or blackboard bold \mathbb S. The sedenions are obtained by applying the Cayley–Dickson construction to the octonions, which can be mathematically expressed as \mathbb=\mathcal(\mathbb,1). As such, the octonions are isomorphism, isomorphic to a Subalgebra#Subalgebras for algebras over a ring or field, subalgebra of the sedenions. Unlike the octonions, the sedenions are not an alternative algebra. Applying the Cayley–Dickson construction to the sedenions yields a 32-dimensional algebra, called the trigintaduonions or sometimes the 32-nions. The term ''sedenion'' is also used for other 16-dimensional algebraic structures, such as a tensor product of two copies of the biquaternions, or the algebra of 4 × 4 matri ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Normed Division Algebra
In mathematics, Hurwitz's theorem is a theorem of Adolf Hurwitz (1859–1919), published posthumously in 1923, solving the Hurwitz problem for finite-dimensional unital real non-associative algebras endowed with a nondegenerate positive-definite quadratic form. The theorem states that if the quadratic form defines a homomorphism into the positive real numbers on the non-zero part of the algebra, then the algebra must be isomorphic to the real numbers, the complex numbers, the quaternions, or the octonions, and that there are no other possibilities. Such algebras, sometimes called Hurwitz algebras, are examples of composition algebras. The theory of composition algebras has subsequently been generalized to arbitrary quadratic forms and arbitrary fields. Hurwitz's theorem implies that multiplicative formulas for sums of squares can only occur in 1, 2, 4 and 8 dimensions, a result originally proved by Hurwitz in 1898. It is a special case of the Hurwitz problem, solved also i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quaternion
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. The algebra of quaternions is often denoted by (for ''Hamilton''), or in blackboard bold by \mathbb H. Quaternions are not a field, because multiplication of quaternions is not, in general, commutative. Quaternions provide a definition of the quotient of two vectors in a three-dimensional space. Quaternions are generally represented in the form a + b\,\mathbf i + c\,\mathbf j +d\,\mathbf k, where the coefficients , , , are real numbers, and , are the ''basis vectors'' or ''basis elements''. Quaternions are used in pure mathematics, but also have practical uses in applied mathematics, particularly for calculations involving three-dimensional rotations, such as in three-dimensional computer graphics, computer vision, robotics, magnetic resonance i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complex Number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a + bi, where and are real numbers. Because no real number satisfies the above equation, was called an imaginary number by René Descartes. For the complex number is called the , and is called the . The set of complex numbers is denoted by either of the symbols \mathbb C or . Despite the historical nomenclature, "imaginary" complex numbers have a mathematical existence as firm as that of the real numbers, and they are fundamental tools in the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with real or complex coefficie ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alternative Algebra
In abstract algebra, an alternative algebra is an algebra over a field, algebra in which multiplication need not be associative, only alternativity, alternative. That is, one must have *x(xy) = (xx)y *(yx)x = y(xx) for all ''x'' and ''y'' in the algebra. Every associative algebra is obviously alternative, but so too are some strictly non-associative algebras such as the octonions. The associator Alternative algebras are so named because they are the algebras for which the associator is alternating form, alternating. The associator is a trilinear map given by :[x,y,z] = (xy)z - x(yz). By definition, a multilinear map is alternating if it Vanish_(mathematics), vanishes whenever two of its arguments are equal. The left and right alternative identities for an algebra are equivalent to :[x,x,y] = 0 :[y,x,x] = 0 Both of these identities together imply that: :[x,y,x]=[x,x,x]+[x,y,x]+ :-[x,x+y,x+y] = := [x,x+y,-y] = := [x,x,-y] - [x,y,y] = 0 for all x and y. This is equivalent to the ''f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Associative Property
In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a Validity (logic), valid rule of replacement for well-formed formula, expressions in Formal proof, logical proofs. Within an expression containing two or more occurrences in a row of the same associative operator, the order in which the Operation (mathematics), operations are performed does not matter as long as the sequence of the operands is not changed. That is (after rewriting the expression with parentheses and in infix notation if necessary), rearranging the parentheses in such an expression will not change its value. Consider the following equations: \begin (2 + 3) + 4 &= 2 + (3 + 4) = 9 \,\\ 2 \times (3 \times 4) &= (2 \times 3) \times 4 = 24 . \end Even though the parentheses were rearranged on each line, the values of the expressions were not altered. Since this holds ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Simple Lie Group
In mathematics, a simple Lie group is a connected non-abelian Lie group ''G'' which does not have nontrivial connected normal subgroups. The list of simple Lie groups can be used to read off the list of simple Lie algebras and Riemannian symmetric spaces. Together with the commutative Lie group of the real numbers, \mathbb, and that of the unit-magnitude complex numbers, U(1) (the unit circle), simple Lie groups give the atomic "building blocks" that make up all (finite-dimensional) connected Lie groups via the operation of group extension. Many commonly encountered Lie groups are either simple or 'close' to being simple: for example, the so-called "special linear group" SL(''n'', \mathbb) of ''n'' by ''n'' matrices with determinant equal to 1 is simple for all odd ''n'' > 1, when it is isomorphic to the projective special linear group. The first classification of simple Lie groups was by Wilhelm Killing, and this work was later perfected by Élie Cartan. The final class ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Associative
In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for expressions in logical proofs. Within an expression containing two or more occurrences in a row of the same associative operator, the order in which the operations are performed does not matter as long as the sequence of the operands is not changed. That is (after rewriting the expression with parentheses and in infix notation if necessary), rearranging the parentheses in such an expression will not change its value. Consider the following equations: \begin (2 + 3) + 4 &= 2 + (3 + 4) = 9 \,\\ 2 \times (3 \times 4) &= (2 \times 3) \times 4 = 24 . \end Even though the parentheses were rearranged on each line, the values of the expressions were not altered. Since this holds true when performing addition and multiplication on any real numbers, i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Power Associativity
In mathematics, specifically in abstract algebra, power associativity is a property of a binary operation that is a weak form of associativity. Definition An algebra (or more generally a magma) is said to be power-associative if the subalgebra generated by any element is associative. Concretely, this means that if an element x is performed an operation * by itself several times, it doesn't matter in which order the operations are carried out, so for instance x*(x*(x*x)) = (x*(x*x))*x = (x*x)*(x*x). Examples and properties Every associative algebra is power-associative, but so are all other alternative algebras (like the octonions, which are non-associative) and even non-alternative flexible algebras like the sedenions, trigintaduonions, and Okubo algebras. Any algebra whose elements are idempotent is also power-associative. Exponentiation to the power of any positive integer can be defined consistently whenever multiplication is power-associative. For example, there is no ne ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |