HOME



picture info

No U-Turn Sampler
The Hamiltonian Monte Carlo algorithm (originally known as hybrid Monte Carlo) is a Markov chain Monte Carlo method for obtaining a sequence of Sampling (statistics), random samples whose distribution Convergence of random variables, converges to a target probability distribution that is difficult to sample directly. This sequence can be used to estimate integrals of the target distribution, such as expected values and Moment (mathematics), moments. Hamiltonian Monte Carlo corresponds to an instance of the Metropolis–Hastings algorithm, with a Hamiltonian mechanics, Hamiltonian dynamics evolution simulated using a Time reversibility, time-reversible and volume-preserving numerical integrator (typically the Leapfrog integration, leapfrog integrator) to propose a move to a new point in the state space. Compared to using a Random walk#Gaussian random walk, Gaussian random walk proposal distribution in the Metropolis–Hastings algorithm, Hamiltonian Monte Carlo reduces the correlat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hamiltonian Monte Carlo
The Hamiltonian Monte Carlo algorithm (originally known as hybrid Monte Carlo) is a Markov chain Monte Carlo method for obtaining a sequence of random samples whose distribution converges to a target probability distribution that is difficult to sample directly. This sequence can be used to estimate integrals of the target distribution, such as expected values and moments. Hamiltonian Monte Carlo corresponds to an instance of the Metropolis–Hastings algorithm, with a Hamiltonian dynamics evolution simulated using a time-reversible and volume-preserving numerical integrator (typically the leapfrog integrator) to propose a move to a new point in the state space. Compared to using a Gaussian random walk proposal distribution in the Metropolis–Hastings algorithm, Hamiltonian Monte Carlo reduces the correlation between successive sampled states by proposing moves to distant states which maintain a high probability of acceptance due to the approximate energy conserving proper ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lattice QCD
Lattice QCD is a well-established non- perturbative approach to solving the quantum chromodynamics (QCD) theory of quarks and gluons. It is a lattice gauge theory formulated on a grid or lattice of points in space and time. When the size of the lattice is taken infinitely large and its sites infinitesimally close to each other, the continuum QCD is recovered. Analytic or perturbative solutions in low-energy QCD are hard or impossible to obtain due to the highly nonlinear nature of the strong force and the large coupling constant at low energies. This formulation of QCD in discrete rather than continuous spacetime naturally introduces a momentum cut-off at the order 1/''a'', where ''a'' is the lattice spacing, which regularizes the theory. As a result, lattice QCD is mathematically well-defined. Most importantly, lattice QCD provides a framework for investigation of non-perturbative phenomena such as confinement and quark–gluon plasma formation, which are intractable by mean ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Potential Energy
In physics, potential energy is the energy of an object or system due to the body's position relative to other objects, or the configuration of its particles. The energy is equal to the work done against any restoring forces, such as gravity or those in a spring. The term ''potential energy'' was introduced by the 19th-century Scottish engineer and physicist William Rankine, although it has links to the ancient Greek philosopher Aristotle's concept of Potentiality and Actuality, ''potentiality''. Common types of potential energy include gravitational potential energy, the elastic potential energy of a deformed spring, and the electric potential energy of an electric charge and an electric field. The unit for energy in the International System of Units (SI) is the joule (symbol J). Potential energy is associated with forces that act on a body in a way that the total Work (physics), work done by these forces on the body depends only on the initial and final positions of the b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mass Matrix
In analytical mechanics, the mass matrix is a symmetric matrix that expresses the connection between the time derivative \mathbf\dot q of the generalized coordinate vector of a system and the kinetic energy of that system, by the equation :T = \frac \mathbf^\textsf \mathbf \mathbf where \mathbf^\textsf denotes the transpose of the vector \mathbf. This equation is analogous to the formula for the kinetic energy of a particle with mass and velocity , namely :T = \frac m, \mathbf, ^2 = \frac \mathbf \cdot m\mathbf and can be derived from it, by expressing the position of each particle of the system in terms of . In general, the mass matrix depends on the state , and therefore varies with time. Lagrangian mechanics yields an ordinary differential equation (actually, a system of coupled differential equations) that describes the evolution of a system in terms of an arbitrary vector of generalized coordinates that completely defines the position of every particle in the system. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Momentum
In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass and is its velocity (also a vector quantity), then the object's momentum (from Latin '' pellere'' "push, drive") is: \mathbf = m \mathbf. In the International System of Units (SI), the unit of measurement of momentum is the kilogram metre per second (kg⋅m/s), which is dimensionally equivalent to the newton-second. Newton's second law of motion states that the rate of change of a body's momentum is equal to the net force acting on it. Momentum depends on the frame of reference, but in any inertial frame of reference, it is a ''conserved'' quantity, meaning that if a closed system is not affected by external forces, its total momentum does not change. Momentum is also conserved in special relativity (with a mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Position (geometry)
In geometry, a position or position vector, also known as location vector or radius vector, is a Euclidean vector that represents a Point (geometry), point ''P'' in space. Its length represents the distance in relation to an arbitrary reference origin (mathematics), origin ''O'', and its Direction (geometry), direction represents the angular orientation with respect to given reference axes. Usually denoted x, r, or s, it corresponds to the straight line segment from ''O'' to ''P''. In other words, it is the displacement (vector), displacement or translation (geometry), translation that maps the origin to ''P'': :\mathbf=\overrightarrow. The term position vector is used mostly in the fields of differential geometry, mechanics and occasionally vector calculus. Frequently this is used in two-dimensional or three-dimensional space, but can be easily generalized to Euclidean spaces and affine spaces of any dimension.Keller, F. J., Gettys, W. E. et al. (1993), p. 28–29. Relativ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Automatic Differentiation
In mathematics and computer algebra, automatic differentiation (auto-differentiation, autodiff, or AD), also called algorithmic differentiation, computational differentiation, and differentiation arithmetic Hend Dawood and Nefertiti Megahed (2023). Automatic differentiation of uncertainties: an interval computational differentiation for first and higher derivatives with implementation. PeerJ Computer Science 9:e1301 https://doi.org/10.7717/peerj-cs.1301. Hend Dawood and Nefertiti Megahed (2019). A Consistent and Categorical Axiomatization of Differentiation Arithmetic Applicable to First and Higher Order Derivatives. Punjab University Journal of Mathematics. 51(11). pp. 77-100. doi: 10.5281/zenodo.3479546. http://doi.org/10.5281/zenodo.3479546. is a set of techniques to evaluate the partial derivative of a function specified by a computer program. Automatic differentiation is a subtle and central tool to automatize the simultaneous computation of the numerical values of arbitrarily ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stan (software)
Stan is a probabilistic programming language for statistical inference written in C++.Stan Development Team. 2015Stan Modeling Language User's Guide and Reference Manual, Version 2.9.0/ref> The Stan language is used to specify a (Bayesian) statistical model with an imperative program calculating the log probability density function. Stan is licensed under the New BSD License. Stan is named in honour of Stanislaw Ulam, pioneer of the Monte Carlo method. Stan was created by a development team consisting of 52 members that includes Andrew Gelman, Bob Carpenter, Daniel Lee, Ben Goodrich, and others. Example A simple linear regression model can be described as y_n = \alpha + \beta x_n + \epsilon_n, where \epsilon_n \sim \text (0, \sigma). This can also be expressed as y_n \sim \text(\alpha + \beta X_n, \sigma). The latter form can be written in Stan as the following: data parameters model Interfaces The Stan language itself can be accessed through several interfaces: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bayesian Network
A Bayesian network (also known as a Bayes network, Bayes net, belief network, or decision network) is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). While it is one of several forms of causal notation, causal networks are special cases of Bayesian networks. Bayesian networks are ideal for taking an event that occurred and predicting the likelihood that any one of several possible known causes was the contributing factor. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases. Efficient algorithms can perform inference and learning in Bayesian networks. Bayesian networks that model sequences of variables (''e.g.'' speech signals or protein sequences) are called dynamic Bayesian networks. Generalizations of Bayesian networks tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gradient
In vector calculus, the gradient of a scalar-valued differentiable function f of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p gives the direction and the rate of fastest increase. The gradient transforms like a vector under change of basis of the space of variables of f. If the gradient of a function is non-zero at a point p, the direction of the gradient is the direction in which the function increases most quickly from p, and the magnitude of the gradient is the rate of increase in that direction, the greatest absolute directional derivative. Further, a point where the gradient is the zero vector is known as a stationary point. The gradient thus plays a fundamental role in optimization theory, where it is used to minimize a function by gradient descent. In coordinate-free terms, the gradient of a function f(\mathbf) may be defined by: df=\nabla f \cdot d\mathbf where df is the total infinitesimal change in f for a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Artificial Neural Network
In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a computational model inspired by the structure and functions of biological neural networks. A neural network consists of connected units or nodes called '' artificial neurons'', which loosely model the neurons in the brain. Artificial neuron models that mimic biological neurons more closely have also been recently investigated and shown to significantly improve performance. These are connected by ''edges'', which model the synapses in the brain. Each artificial neuron receives signals from connected neurons, then processes them and sends a signal to other connected neurons. The "signal" is a real number, and the output of each neuron is computed by some non-linear function of the sum of its inputs, called the '' activation function''. The strength of the signal at each connection is determined by a ''weight'', which adjusts during the learning process. Typically, ne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Radford M
Radford may refer to: Places England *Radford, Coventry, West Midlands *Radford, Nottingham, Nottinghamshire * Radford, Plymstock, Devon * Radford, Oxfordshire * Radford, Somerset * Radford, Worcestershire * Radford Cave in Devon *Radford Semele, Warwickshire United States * Radford, Alabama * Radford, Illinois *Radford, Virginia Elsewhere * Radford Island, an island in the Antarctic Ocean People * Radford (surname) * Radford family, a British reality TV family with many children * Radford Davis, an author of ninjutsu works *Radford Gamack (1897–1979) Australian politician * Radford M. Neal (born 1956) Canadian computer scientist Facilities and structures *Radford railway station, a former train station in Nottingham, England, UK * Radford railway station, Queensland, Australia *Radford Army Ammunition Plant, Radford, Virginia, USA * Radford College, Canberra, Australia; a coeducational day school *Radford University Radford University is a public university in Radford, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]