HOME



picture info

Neutrino
A neutrino ( ; denoted by the Greek letter ) is an elementary particle that interacts via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small ('' -ino'') that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles (excluding massless particles). The weak force has a very short range, the gravitational interaction is extremely weak due to the very small mass of the neutrino, and neutrinos do not participate in the electromagnetic interaction or the strong interaction. Consequently, neutrinos typically pass through normal matter unimpeded and with no detectable effect. Weak interactions create neutrinos in one of three leptonic flavors: # electron neutrino, # muon neutrino, # tau neutrino, Each flavor is associated with the correspondingly named charged lepton. Although neutrinos were long believed to be mas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lepton
In particle physics, a lepton is an elementary particle of half-integer spin (Spin (physics), spin ) that does not undergo strong interactions. Two main classes of leptons exist: electric charge, charged leptons (also known as the electron-like leptons or muons), including the electron, muon, and tauon, and neutral leptons, better known as neutrinos. Charged leptons can combine with other particles to form various composite particles such as atoms and positronium, while neutrinos rarely interact with anything, and are consequently rarely observed. The best known of all leptons is the electron. There are six types of leptons, known as ''flavour (particle physics), flavours'', grouped in three ''Generation (particle physics), generations''. The Standard Model, first-generation leptons, also called ''electronic leptons'', comprise the electron () and the electron neutrino (); the second are the ''muonic leptons'', comprising the muon () and the muon neutrino (); and the third a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Frederick Reines
Frederick Reines ( ; March 16, 1918 – August 26, 1998) was an American physicist. He was awarded the 1995 Nobel Prize in Physics for his co-detection of the neutrino with Clyde Cowan in the neutrino experiment. He may be the only scientist in history "so intimately associated with the discovery of an elementary particle and the subsequent thorough investigation of its fundamental properties." A graduate of Stevens Institute of Technology and New York University, Reines joined the Manhattan Project's Los Alamos Laboratory in 1944, working in the Theoretical Division in Richard Feynman's group. He became a group leader there in 1946. He participated in a number of nuclear tests, culminating in his becoming the director of the Operation Greenhouse test series in the Pacific in 1951. In the early 1950s, working in Hanford Site, Hanford and Savannah River Sites, Reines and Cowan developed the equipment and procedures with which they first detected the supposedly undetectable neutri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Tau Neutrino
The tau neutrino or tauon neutrino is an elementary particle which has the symbol and zero electric charge. Together with the tau (particle), tau (), it forms the third generation (physics), generation of leptons, hence the name tau neutrino. Its existence was immediately implied after the tau particle was detected in a series of experiments between 1974 and 1977 by Martin Lewis Perl with his colleagues at the SLAC–Lawrence Berkeley National Laboratory, LBL group. The discovery of the tau neutrino was announced in July 2000 by the DONUT, DONUT collaboration (Direct Observation of the Nu Tau). In 2024, the IceCube Neutrino Observatory published findings of seven astrophysical tau neutrino candidates. As of 2022 they have been called the "least studied particle in the standard model" because of their low cross section, difficulty of production, and difficulty to distinguish from other neutrino flavors. One review argues they are worth studying more in order to finally completel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Elementary Particle
In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles—twelve fermions and five bosons. As a consequence of flavor and color combinations and antimatter, the fermions and bosons are known to have 48 and 13 variations, respectively. Among the 61 elementary particles embraced by the Standard Model number: electrons and other leptons, quarks, and the fundamental bosons. Subatomic particles such as protons or neutrons, which contain two or more elementary particles, are known as composite particles. Ordinary matter is composed of atoms, themselves once thought to be indivisible elementary particles. The name ''atom'' comes from the Ancient Greek word ''ἄτομος'' ( atomos) which means ''indivisible'' or ''uncuttable''. Despite the theories about atoms that had existed for thousands of years, the factual existence of ato ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lepton Number
In particle physics, lepton number (historically also called lepton charge) is a conserved quantum number representing the difference between the number of leptons and the number of antileptons in an elementary particle reaction. Lepton number is an additive quantum number, so its sum is preserved in interactions (as opposed to multiplicative quantum numbers such as parity, where the product is preserved instead). The lepton number L is defined by L = n_\ell - n_, where * n_\ell \quad is the number of leptons and * n_ \quad is the number of antileptons. Lepton number was introduced in 1953 to explain the absence of reactions such as : in the Cowan–Reines neutrino experiment, which instead observed : . This process, inverse beta decay, conserves lepton number, as the incoming antineutrino has lepton number −1, while the outgoing positron (antielectron) also has lepton number −1. Lepton flavor conservation In addition to lepton number, lepton fa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Electron Neutrino
The electron neutrino () is an elementary particle which has zero electric charge and a spin of . Together with the electron, it forms the first generation of leptons, hence the name ''electron neutrino''. It was first hypothesized by Wolfgang Pauli in 1930, to account for missing momentum and missing energy in beta decay, and was discovered in 1956 by a team led by Clyde Cowan and Frederick Reines (see Cowan–Reines neutrino experiment). Proposal In the early 1900s, theories predicted that the electrons resulting from beta decay should have been emitted at a specific energy. However, in 1914, James Chadwick showed that electrons were instead emitted in a continuous spectrum. : → + : The early understanding of beta decay In 1930, Wolfgang Pauli theorized that an undetected particle was carrying away the observed difference between the energy, momentum, and angular momentum of the initial and final particles.Niels Bohr was notably opposed to this interpreta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Weak Interaction
In nuclear physics and particle physics, the weak interaction, weak force or the weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is the mechanism of interaction between subatomic particles that is responsible for the radioactive decay of atoms: The weak interaction participates in nuclear fission and nuclear fusion. The theory describing its behaviour and effects is sometimes called quantum flavordynamics (QFD); however, the term QFD is rarely used, because the weak force is better understood by Electroweak interaction, electroweak theory (EWT). The effective range of the weak force is limited to subatomic distances and is less than the diameter of a proton. Background The Standard Model of particle physics provides a uniform framework for understanding electromagnetic, weak, and strong interactions. An interaction occurs when two particles (typically, but not necess ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Muon Neutrino
The muon neutrino is an elementary particle which has the symbol and zero electric charge. Together with the muon it forms the second generation of leptons, hence the name muon neutrino. It was discovered in 1962 by Leon Lederman, Melvin Schwartz and Jack Steinberger. The discovery was rewarded with the 1988 Nobel Prize in Physics. Discovery The muon neutrino or "neutretto" was hypothesized by several physicists in the 1940s. The first paper on it may be Shoichi Sakata and Takesi Inoue's two-meson theory of 1942, which also involved two neutrinos. In 1962 Leon M. Lederman, Melvin Schwartz and Jack Steinberger proved the existence of the muon neutrino in an experiment at the Brookhaven National Laboratory. This earned them the 1988 Nobel Prize. Apparent speed anomaly In September 2011 OPERA researchers reported that muon neutrinos were apparently traveling at faster than the speed of light. This result was confirmed in a second experiment in November 2011. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Flavour (particle Physics)
In particle physics, flavour or flavor refers to the ''species'' of an elementary particle. The Standard Model counts six flavours of quarks and six flavours of leptons. They are conventionally parameterized with ''flavour quantum numbers'' that are assigned to all subatomic particles. They can also be described by some of the family symmetries proposed for the quark-lepton generations. Quantum numbers In classical mechanics, a force acting on a point particle, point-like particle can only alter the particle's dynamical state, i.e., its momentum, angular momentum, etc. Quantum field theory, however, allows interactions that can alter other facets of a particle's nature described by non-dynamical, discrete quantum numbers. In particular, the action of the weak interaction, weak force is such that it allows the conversion of quantum numbers describing invariant mass, mass and electric charge of both quarks and leptons from one discrete type to another. This is known as a flav ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jack Steinberger
Jack Steinberger (born Hans Jakob Steinberger; May 25, 1921December 12, 2020) was a German-born American physicist noted for his work with neutrinos, the subatomic particles considered to be elementary constituents of matter. He was a recipient of the 1988 Nobel Prize in Physics, along with Leon M. Lederman and Melvin Schwartz, for the discovery of the muon neutrino. Through his career as an experimental particle physicist, he held positions at the University of California, Berkeley, Columbia University (1950–68), and the CERN (1968–86). He was also a recipient of the United States National Medal of Science in 1988, and the Matteucci Medal from the Italian Academy of Sciences in 1990. Early life and education Steinberger was born in the city of Bad Kissingen in Bavaria, Germany, on May 25, 1921, into a Jewish family. The rise of Nazism in Germany, with its open anti-Semitism, prompted his parents, Ludwig Lazarus (a cantor and religious teacher) and Berta May Steinberger, to s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]