Möbius Loop Roller Coaster
   HOME





Möbius Loop Roller Coaster
Moebius, Mœbius, Möbius or Mobius may refer to: People * August Ferdinand Möbius (1790–1868), German mathematician and astronomer * Friedrich Möbius (art historian) (1928–2024), German art historian and architectural historian * Theodor Möbius (1821–1890), German philologist, son of August Ferdinand * Karl Möbius (1825–1908), German zoologist and ecologist * Paul Julius Möbius (1853–1907), German neurologist, grandson of August Ferdinand * Dieter Moebius (1944–2015), Swiss-born German musician * Mark Mobius (born 1936), emerging markets investments pioneer * Jean Giraud (1938–2012), French comics artist who used the pseudonym Mœbius Fictional characters * Mobius M. Mobius, a character in Marvel Comics * Mobius, also known as the Anti-Monitor, a supervillain in DC Comics * Johann Wilhelm Möbius, a character in the play '' The Physicists'' * Moebius, the main antagonistic faction in the video game ''Xenoblade Chronicles 3'' * Mobius, or Dr. Ignatio Mobius ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


August Ferdinand Möbius
August Ferdinand Möbius (, ; ; 17 November 1790 – 26 September 1868) was a German mathematician and theoretical astronomer. Life and education Möbius was born in Schulpforta, Electorate of Saxony, and was descended on his mother's side from religious reformer Martin Luther. He was home-schooled until he was 13, when he attended the college in Schulpforta in 1803, and studied there, graduating in 1809. He then enrolled at the University of Leipzig, where he studied astronomy under the mathematician and astronomer Karl Mollweide. In 1813, he began to study astronomy under mathematician Carl Friedrich Gauss at the University of Göttingen, while Gauss was the director of the Göttingen Observatory. From there, he went to study with Carl Gauss's instructor, Johann Pfaff, at the University of Halle, where he completed his doctoral thesis ''The occultation of fixed stars'' in 1815. In 1816, he was appointed as Extraordinary Professor to the "chair of astronomy and hi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

New Vegas
''Fallout: New Vegas'' is a 2010 action role-playing game that was developed by Obsidian Entertainment and published by Bethesda Softworks. The game, which was released for Microsoft Windows, PlayStation 3, and Xbox 360, is set in the Mojave Desert 204 years after a devastating nuclear war. The player controls a courier who survives an assassination attempt, and becomes embroiled in a conflict between different governing factions that are vying for control of the region. ''Fallout: New Vegas'' features a freely explorable open world, and the player can engage in combat with a variety of weapons. The player can also initiate conversations with non-player characters in the form of dialogue trees, and their responses determine their reputation among the different factions. After the release of ''Fallout 3'' in 2008, Bethesda contracted Obsidian to develop a spin-off game in the ''Fallout'' series. The developers chose Las Vegas, Nevada, and the surrounding Mojave Desert as the set ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Möbius Plane
In mathematics, the classical Möbius plane (named after August Ferdinand Möbius) is the Euclidean plane supplemented by a single point at infinity. It is also called the inversive plane because it is closed under inversion with respect to any generalized circle, and thus a natural setting for planar inversive geometry. An inversion of the Möbius plane with respect to any circle is an involution (mathematics), involution which fixes the points on the circle and exchanges the points in the interior and exterior, the center of the circle exchanged with the point at infinity. In inversive geometry a straight line is considered to be a generalized circle containing the point at infinity; inversion of the plane with respect to a line is a Euclidean reflection (mathematics), reflection. More generally, a Möbius plane is an incidence structure with the same incidence relationships as the classical Möbius plane. It is one of the Benz planes: Möbius plane, Laguerre plane and Minkowski p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Möbius–Kantor Graph
In the mathematics, mathematical field of graph theory, the Möbius–Kantor graph is a symmetric graph, symmetric bipartite graph, bipartite cubic graph with 16 vertices and 24 edges named after August Ferdinand Möbius and Seligmann Kantor. It can be defined as the generalized Petersen graph ''G''(8,3): that is, it is formed by the vertices of an octagon, connected to the vertices of an eight-point star in which each point of the star is connected to the points three steps away from it (an octagram). Möbius–Kantor configuration asked whether there exists a pair of polygons with ''p'' sides each, having the property that the vertices of one polygon lie on the lines through the edges of the other polygon, and vice versa. If so, the vertices and edges of these polygons would form a projective configuration. For ''p'' = 4 there is no solution in the Euclidean plane, but found pairs of polygons of this type, for a generalization of the problem in which the points and edges bel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Möbius–Kantor Configuration
In geometry, the Möbius–Kantor configuration is a configuration consisting of eight points and eight lines, with three points on each line and three lines through each point. It is not possible to draw points and lines having this pattern of incidences in the Euclidean plane, but it is possible in the complex projective plane. Coordinates asked whether there exists a pair of polygons with ''p'' sides each, having the property that the vertices of one polygon lie on the lines through the edges of the other polygon, and vice versa. If so, the vertices and edges of these polygons would form a projective configuration. For p = 4 there is no solution in the Euclidean plane, but found pairs of polygons of this type, for a generalization of the problem in which the points and edges belong to the complex projective plane. That is, in Kantor's solution, the coordinates of the polygon vertices are complex numbers. Kantor's solution for p = 4, a pair of mutually-inscribed quadrilateral ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE