Minimal Prime Ideal
In mathematics, especially in commutative algebra, certain prime ideals called minimal prime ideals play an important role in understanding rings and modules. The notion of height and Krull's principal ideal theorem use minimal prime ideals. Definition A prime ideal ''P'' is said to be a minimal prime ideal over an ideal ''I'' if it is minimal among all prime ideals containing ''I''. (Note: if ''I'' is a prime ideal, then ''I'' is the only minimal prime over it.) A prime ideal is said to be a minimal prime ideal if it is a minimal prime ideal over the zero ideal. A minimal prime ideal over an ideal ''I'' in a Noetherian ring ''R'' is precisely a minimal associated prime (also called isolated prime) of R/I; this follows for instance from the primary decomposition of ''I''. Examples * In a commutative Artinian ring, every maximal ideal is a minimal prime ideal. * In an integral domain, the only minimal prime ideal is the zero ideal. * In the ring Z of integers, the minimal pri ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Primary Ideal
In mathematics, specifically commutative algebra, a proper ideal ''Q'' of a commutative ring ''A'' is said to be primary if whenever ''xy'' is an element of ''Q'' then ''x'' or ''y''''n'' is also an element of ''Q'', for some ''n'' > 0. For example, in the ring of integers Z, (''p''''n'') is a primary ideal if ''p'' is a prime number. The notion of primary ideals is important in commutative ring theory because every ideal of a Noetherian ring has a primary decomposition, that is, can be written as an intersection of finitely many primary ideals. This result is known as the Lasker–Noether theorem. Consequently, an irreducible ideal of a Noetherian ring is primary. Various methods of generalizing primary ideals to noncommutative rings exist, but the topic is most often studied for commutative rings. Therefore, the rings in this article are assumed to be commutative rings with identity. Examples and properties * The definition can be rephrased in a more symmetric m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Krull Dimension
In commutative algebra, the Krull dimension of a commutative ring ''R'', named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules. The Krull dimension was introduced to provide an algebraic definition of the dimension of an algebraic variety: the dimension of the affine variety defined by an ideal ''I'' in a polynomial ring ''R'' is the Krull dimension of ''R''/''I''. A field ''k'' has Krull dimension 0; more generally, ''k'' 'x''1, ..., ''x''''n''has Krull dimension ''n''. A principal ideal domain that is not a field has Krull dimension 1. A local ring has Krull dimension 0 if and only if every element of its maximal ideal is nilpotent. There are several other ways that have been used to define the dimension of a ring. Most of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Local Ring
In mathematics, more specifically in ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on algebraic varieties or manifolds, or of algebraic number fields examined at a particular place, or prime. Local algebra is the branch of commutative algebra that studies commutative local rings and their modules. In practice, a commutative local ring often arises as the result of the localization of a ring at a prime ideal. The concept of local rings was introduced by Wolfgang Krull in 1938 under the name ''Stellenringe''. The English term ''local ring'' is due to Zariski. Definition and first consequences A ring ''R'' is a local ring if it has any one of the following equivalent properties: * ''R'' has a unique maximal left ideal. * ''R'' has a unique maximal right ideal. * 1 ≠ 0 and the sum of any two non- units in ''R'' is a non-unit. * 1 ≠ 0 and if ''x ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Primary Component
In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many ''primary ideals'' (which are related to, but not quite the same as, powers of prime ideals). The theorem was first proven by for the special case of polynomial rings and convergent power series rings, and was proven in its full generality by . The Lasker–Noether theorem is an extension of the fundamental theorem of arithmetic, and more generally the fundamental theorem of finitely generated abelian groups to all Noetherian rings. The theorem plays an important role in algebraic geometry, by asserting that every algebraic set may be uniquely decomposed into a finite union of irreducible components. It has a straightforward extension to modules stating that every submodule of a finitely generated module over a Noetherian ring is a finite intersection of primary submodule ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Zero Divisor
In abstract algebra, an element of a ring is called a left zero divisor if there exists a nonzero in such that , or equivalently if the map from to that sends to is not injective. Similarly, an element of a ring is called a right zero divisor if there exists a nonzero in such that . This is a partial case of divisibility in rings. An element that is a left or a right zero divisor is simply called a zero divisor. An element that is both a left and a right zero divisor is called a two-sided zero divisor (the nonzero such that may be different from the nonzero such that ). If the ring is commutative, then the left and right zero divisors are the same. An element of a ring that is not a left zero divisor (respectively, not a right zero divisor) is called left regular or left cancellable (respectively, right regular or right cancellable). An element of a ring that is left and right cancellable, and is hence not a zero divisor, is called regular or cancellabl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Radical Of An Ideal
Radical (from Latin: ', root) may refer to: Politics and ideology Politics * Classical radicalism, the Radical Movement that began in late 18th century Britain and spread to continental Europe and Latin America in the 19th century * Radical politics, the political intent of fundamental societal change * Radical Party (other), several political parties *Radicals (UK), a British and Irish grouping in the early to mid-19th century * Radicalization *Politicians from the Radical Civic Union Ideologies * Radical chic, a term coined by Tom Wolfe to describe the pretentious adoption of radical causes * Radical feminism, a perspective within feminism that focuses on patriarchy * Radical Islam, or Islamic extremism * Radical Christianity * Radical veganism, a radical interpretation of veganism, usually combined with anarchism * Radical Reformation, an Anabaptist movement concurrent with the Protestant Reformation Science and mathematics Science * Radical (chemistry), an atom, molec ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ascending Chain Conditions On Radical Ideals
''Ascending'' is a science fiction novel by the Canadian writer James Alan Gardner, published in 2001 by HarperCollins Publishers under its various imprints.HarperCollins, Avon, HarperCollins Canada, SFBC/Avon; paperback edition 2001, Eos Books. It is the fifth novel in Gardner's " League of Peoples" series. It is a direct sequel to the first novel in the series, ''Expendable'', in that it picks up the dual story of Festina Ramos, Explorer turned admiral, and the transparent glass woman Oar, where the earlier novel left off. Backstory Through the course of ''Ascending'', Gardner adds depth, detail, and perspective to the conceptual background he has established for the "League of Peoples" series. In particular, he explains how human beings and other species in the galaxy are contacted by, and become a part of, the larger galactic community. Sometime in the middle of the 21st century, humanity encounters a mysterious group of beings who call themselves merely "citizens of the Le ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Emmy Noether
Amalie Emmy Noether (23 March 1882 – 14 April 1935) was a German mathematician who made many important contributions to abstract algebra. She also proved Noether's theorem, Noether's first and Noether's second theorem, second theorems, which are fundamental in mathematical physics. Noether was described by Pavel Alexandrov, Albert Einstein, Jean Dieudonné, Hermann Weyl and Norbert Wiener as the most important List of women in mathematics, woman in the history of mathematics. Transcribeonlineat the MacTutor History of Mathematics Archive. As one of the leading mathematicians of her time, she developed theories of ring (mathematics), rings, field (mathematics), fields, and algebras. In physics, Noether's theorem explains the connection between Symmetry (physics), symmetry and conservation laws. in . Noether was born to a Jewish family in the Franconian town of Erlangen; her father was the mathematician Max Noether. She originally planned to teach French and English after passin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Maximal And Minimal Elements
In mathematics, especially in order theory, a maximal element of a subset S of some preordered set is an element of S that is not smaller than any other element in S. A minimal element of a subset S of some preordered set is defined dually as an element of S that is not greater than any other element in S. The notions of maximal and minimal elements are weaker than those of greatest element and least element which are also known, respectively, as maximum and minimum. The maximum of a subset S of a preordered set is an element of S which is greater than or equal to any other element of S, and the minimum of S is again defined dually. In the particular case of a partially ordered set, while there can be at most one maximum and at most one minimum there may be multiple maximal or minimal elements. Specializing further to totally ordered sets, the notions of maximal element and maximum coincide, and the notions of minimal element and minimum coincide. As an example, in the collecti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Zorn's Lemma
Zorn's lemma, also known as the Kuratowski–Zorn lemma, is a proposition of set theory. It states that a partially ordered set containing upper bounds for every chain (that is, every totally ordered subset) necessarily contains at least one maximal element. The lemma was proved (assuming the axiom of choice) by Kazimierz Kuratowski in 1922 and independently by Max Zorn in 1935. It occurs in the proofs of several theorems of crucial importance, for instance the Hahn–Banach theorem in functional analysis, the theorem that every vector space has a basis, Tychonoff's theorem in topology stating that every product of compact spaces is compact, and the theorems in abstract algebra that in a ring with identity every proper ideal is contained in a maximal ideal and that every field has an algebraic closure. Zorn's lemma is equivalent to the well-ordering theorem and also to the axiom of choice, in the sense that within ZF ( Zermelo–Fraenkel set theory without th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proper Ideal
In mathematics, and more specifically in ring theory, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer (even or odd) results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group. Among the integers, the ideals correspond one-for-one with the non-negative integers: in this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative number. However, in other rings, the ideals may not correspond directly to the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to the ideals than to the elements o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |