Mingarelli Identity
   HOME





Mingarelli Identity
In the field of ordinary differential equations, the Mingarelli identityThe locution was coined by Philip Hartman, according to is a theorem that provides criteria for the oscillation theory, oscillation and oscillation theory, non-oscillation of solutions of some linear differential equations in the real domain. It extends the Picone identity from two to three or more differential equations of the second order. The identity Consider the solutions of the following (uncoupled) system of second order linear differential equations over the –interval : :(p_i(t) x_i^\prime)^\prime + q_i(t) x_i = 0, \,\,\,\,\,\,\,\,\,\, x_i(a)=1,\,\, x_i^\prime(a)=R_i where i=1,2, \ldots, n. Let \Delta denote the forward difference operator, i.e. :\Delta x_i = x_-x_i. The second order difference operator is found by iterating the first order operator as in :\Delta^2 (x_i) = \Delta(\Delta x_i) = x_-2x_+x_,, with a similar definition for the higher iterates. Leaving out the independent variable f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ordinary Differential Equation
In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable (mathematics), variable. As with any other DE, its unknown(s) consists of one (or more) Function (mathematics), function(s) and involves the derivatives of those functions. The term "ordinary" is used in contrast with partial differential equation, ''partial'' differential equations (PDEs) which may be with respect to one independent variable, and, less commonly, in contrast with stochastic differential equations, ''stochastic'' differential equations (SDEs) where the progression is random. Differential equations A linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form :a_0(x)y +a_1(x)y' + a_2(x)y'' +\cdots +a_n(x)y^+b(x)=0, where a_0(x),\ldots,a_n(x) and b(x) are arbitrary differentiable functions that do not need to be linea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Philip Hartman
Philip Hartman (May 16, 1915 – August 28, 2015) was an American mathematician at Johns Hopkins University The Johns Hopkins University (often abbreviated as Johns Hopkins, Hopkins, or JHU) is a private university, private research university in Baltimore, Maryland, United States. Founded in 1876 based on the European research institution model, J ... working on differential equations who introduced the Hartman–Grobman theorem. He served as Chairman of the Mathematics Department at Johns Hopkins for several years. He has an Erdös number of 2. His book gives a necessary and sufficient condition for solutions of ordinary initial value problems to be unique and to depend on a class C1 manner on the initial conditions for solutions. He died in August 2015 at the age of 100. The Hartman–Watson distribution is named after him and Geoffrey S. Watson. Publications * References External links * {{DEFAULTSORT:Hartman, Philip 1915 births 2015 deaths Edu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Oscillation Theory
In mathematics, in the field of ordinary differential equations, a nontrivial solution to an ordinary differential equation :F(x,y,y',\ \dots,\ y^)=y^ \quad x \in spectrum of associated boundary value problems. Examples The differential equation :y'' + y = 0 is oscillating as sin(''x'') is a solution. Connection with spectral theory Oscillation theory was initiated by Jacques Charles François Sturm in his investigations of Sturm–Liouville problems from 1836. There he showed that the n'th eigenfunction of a Sturm–Liouville problem has precisely n-1 roots. For the one-dimensional Schrödinger equation The Schrödinger equation is a partial differential equation that governs the wave function of a non-relativistic quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after E ... the question about oscillation/non-oscillation answers the question whether the eigenvalues accumulate at the bottom of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Linear Differential Equation
In mathematics, a linear differential equation is a differential equation that is linear equation, linear in the unknown function and its derivatives, so it can be written in the form a_0(x)y + a_1(x)y' + a_2(x)y'' \cdots + a_n(x)y^ = b(x) where and are arbitrary differentiable functions that do not need to be linear, and are the successive derivatives of an unknown function of the variable . Such an equation is an ordinary differential equation (ODE). A ''linear differential equation'' may also be a linear partial differential equation (PDE), if the unknown function depends on several variables, and the derivatives that appear in the equation are partial derivatives. Types of solution A linear differential equation or a system of linear equations such that the associated homogeneous equations have constant coefficients may be solved by quadrature, which means that the solutions may be expressed in terms of antiderivative, integrals. This is also true for a linear equation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Picone Identity
In the field of ordinary differential equations, the Picone identity, named after Mauro Picone, is a classical result about homogeneous linear second order differential equations. Since its inception in 1910 it has been used with tremendous success in association with an almost immediate proof of the Sturm comparison theorem, a theorem whose proof took up many pages in Sturm's original memoir of 1836. It is also useful in studying the oscillation of such equations and has been generalized to other type of differential equations and difference equations. The Picone identity is used to prove the Sturm–Picone comparison theorem In mathematics, in the field of ordinary differential equations, the Sturm–Picone comparison theorem, named after Jacques Charles François Sturm and Mauro Picone, is a classical theorem which provides criteria for the oscillation and non-oscilla .... Picone identity Suppose that ''u'' and ''v'' are solutions of the two homogeneous linear second order d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Logarithmic Derivative
In mathematics, specifically in calculus and complex analysis, the logarithmic derivative of a function is defined by the formula \frac where is the derivative of . Intuitively, this is the infinitesimal relative change in ; that is, the infinitesimal absolute change in , namely scaled by the current value of . When is a function of a real variable , and takes real, strictly positive values, this is equal to the derivative of , or the natural logarithm of . This follows directly from the chain rule: \frac\ln f(x) = \frac \frac Basic properties Many properties of the real logarithm also apply to the logarithmic derivative, even when the function does ''not'' take values in the positive reals. For example, since the logarithm of a product is the sum of the logarithms of the factors, we have (\log uv)' = (\log u + \log v)' = (\log u)' + (\log v)' . So for positive-real-valued functions, the logarithmic derivative of a product is the sum of the logarithmic derivatives ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wronskian Determinant
In mathematics, the Wronskian of ''n'' differentiable functions is the determinant formed with the functions and their derivatives up to order . It was introduced in 1812 by the Polish mathematician Józef Wroński, and is used in the study of differential equations, where it can sometimes show the linear independence of a set of solutions. Definition The Wrońskian of two differentiable functions and is W(f,g)=f g' - g f' . More generally, for real- or complex-valued functions , which are times differentiable on an interval , the Wronskian W(f_1,\ldots,f_n) is a function on x\in I defined by W(f_1, \ldots, f_n) (x)= \det \begin f_1(x) & f_2(x) & \cdots & f_n(x) \\ f_1'(x) & f_2'(x) & \cdots & f_n' (x)\\ \vdots & \vdots & \ddots & \vdots \\ f_1^(x)& f_2^(x) & \cdots & f_n^(x) \end. This is the determinant of the matrix constructed by placing the functions in the first row, the first derivatives of the functions in the second row, and so on through the (n-1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Binomial Coefficients
In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers and is written \tbinom. It is the coefficient of the term in the polynomial expansion of the binomial power ; this coefficient can be computed by the multiplicative formula : \binom nk = \frac, which using factorial notation can be compactly expressed as : \binom = \frac. For example, the fourth power of is : \begin (1 + x)^4 &= \tbinom x^0 + \tbinom x^1 + \tbinom x^2 + \tbinom x^3 + \tbinom x^4 \\ &= 1 + 4x + 6 x^2 + 4x^3 + x^4, \end and the binomial coefficient \tbinom =\tfrac = \tfrac = 6 is the coefficient of the term. Arranging the numbers \tbinom, \tbinom, \ldots, \tbinom in successive rows for gives a triangular array called Pascal's triangle, satisfying the recurrence relation : \binom = \binom + \binom . The binomial coefficients occur in many areas of mathematics, and especia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sturm–Picone Comparison Theorem
In mathematics, in the field of ordinary differential equations, the Sturm–Picone comparison theorem, named after Jacques Charles François Sturm and Mauro Picone, is a classical theorem which provides criteria for the oscillation and non-oscillation of solutions of certain linear differential equations in the real domain. Let , for be real-valued continuous functions on the interval and let #(p_1(x) y^\prime)^\prime + q_1(x) y = 0 #(p_2(x) y^\prime)^\prime + q_2(x) y = 0 be two homogeneous linear second order differential equations in self-adjoint form with :0 < p_2(x) \le p_1(x) and :q_1(x) \le q_2(x). Let be a non-trivial solution of (1) with successive roots at and and let be a non-trivial solution of (2). Then one of the following properties holds. *There exists an in such that or *there exists a in R such that . The first part of the conclusion is due to Sturm (1836), while the second (alternative) part of the theorem is due to Picone (19 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Self-adjoint Form
In mathematics, an element of a *-algebra is called self-adjoint if it is the same as its adjoint (i.e. a = a^*). Definition Let \mathcal be a *-algebra. An element a \in \mathcal is called self-adjoint if The set of self-adjoint elements is referred to as A subset \mathcal \subseteq \mathcal that is closed under the involution *, i.e. \mathcal = \mathcal^*, is called A special case of particular importance is the case where \mathcal is a complete normed *-algebra, that satisfies the C*-identity (\left\, a^*a \right\, = \left\, a \right\, ^2 \ \forall a \in \mathcal), which is called a C*-algebra. Especially in the older literature on *-algebras and C*-algebras, such elements are often called Because of that the notations \mathcal_h, \mathcal_H or H(\mathcal) for the set of self-adjoint elements are also sometimes used, even in the more recent literature. Examples * Each positive element of a C*-algebra is * For each element a of a *-algebra, the elements aa^* ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Reports Of The Academy Of Science
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE