Miller–Rabin Primality Test
The Miller–Rabin primality test or Rabin–Miller primality test is a probabilistic primality test: an algorithm which determines whether a given number is likely to be prime, similar to the Fermat primality test and the Solovay–Strassen primality test. It is of historical significance in the search for a polynomial-time deterministic primality test. Its probabilistic variant remains widely used in practice, as one of the simplest and fastest tests known. Gary L. Miller discovered the test in 1976. Miller's version of the test is deterministic, but its correctness relies on the unproven extended Riemann hypothesis. Michael O. Rabin modified it to obtain an unconditional probabilistic algorithm in 1980. Mathematical concepts Similarly to the Fermat and Solovay–Strassen tests, the Miller–Rabin primality test checks whether a specific property, which is known to hold for prime values, holds for the number under testing. Strong probable primes The property is th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Primality Test
A primality test is an algorithm for determining whether an input number is prime. Among other fields of mathematics, it is used for cryptography. Unlike integer factorization, primality tests do not generally give prime factors, only stating whether the input number is prime or not. Factorization is thought to be a computationally difficult problem, whereas primality testing is comparatively easy (its running time is polynomial in the size of the input). Some primality tests prove that a number is prime, while others like Miller–Rabin prove that a number is composite. Therefore, the latter might more accurately be called ''compositeness tests'' instead of primality tests. Simple methods The simplest primality test is '' trial division'': given an input number, n, check whether it is divisible by any prime number between 2 and \sqrt n (i.e., whether the division leaves no remainder). If so, then n is composite. Otherwise, it is prime.Riesel (1994) pp.2-3 For any divisor p \ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Strong Pseudoprime
Strong may refer to: Education * The Strong, an educational institution in Rochester, New York, United States * Strong Hall (Lawrence, Kansas), an administrative hall of the University of Kansas * Strong School, New Haven, Connecticut, United States, an overflow school for district kindergartners and first graders Music Albums * '' Strong (Tyler Hubbard album)'', 2024 * ''Strong'' (Anette Olzon album), 2021 * ''Strong'' (Arrested Development album), 2010 * ''Strong'' (Michelle Wright album), 2013 * ''Strong'' (Thomas Anders album), 2010 * ''Strong'' (Tracy Lawrence album), 2004 * ''Strong'', a 2000 album by Clare Quilty Songs * "Strong" (London Grammar song), 2013 * "Strong" (One Direction song), 2013 * "Strong" (Robbie Williams song), 1999 * "Strong" (Romy song), 2022 * "Strong", a song by After Forever from '' Remagine'' * "Strong", a song by Audio Adrenaline from '' Worldwide'' * "Strong", a song by LeAnn Rimes from '' Whatever We Wanna'' * "Strong", a song by Lon ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Euclid's Lemma
In algebra and number theory, Euclid's lemma is a lemma that captures a fundamental property of prime numbers: For example, if , , , then , and since this is divisible by 19, the lemma implies that one or both of 133 or 143 must be as well. In fact, . The lemma first appeared in Euclid's '' Elements'', and is a fundamental result in elementary number theory. If the premise of the lemma does not hold, that is, if is a composite number, its consequent may be either true or false. For example, in the case of , , , composite number 10 divides , but 10 divides neither 4 nor 15. This property is the key in the proof of the fundamental theorem of arithmetic. It is used to define prime elements, a generalization of prime numbers to arbitrary commutative rings. Euclid's lemma shows that in the integers irreducible elements are also prime elements. The proof uses induction so it does not apply to all integral domains. Formulations Euclid's lemma is commonly used in the following e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Euclidean Division Of Polynomials
In algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers. In the important case of univariate polynomials over a field the polynomial GCD may be computed, like for the integer GCD, by the Euclidean algorithm using long division. The polynomial GCD is defined only up to the multiplication by an invertible constant. The similarity between the integer GCD and the polynomial GCD allows extending to univariate polynomials all the properties that may be deduced from the Euclidean algorithm and Euclidean division. Moreover, the polynomial GCD has specific properties that make it a fundamental notion in various areas of algebra. Typically, the roots of the GCD of two polynomials are the common roots of the two polynomials, and this provides information on the roots without comp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Root Of A Polynomial
In mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function f, is a member x of the domain of f such that f(x) ''vanishes'' at x; that is, the function f attains the value of 0 at x, or equivalently, x is a solution to the equation f(x) = 0. A "zero" of a function is thus an input value that produces an output of 0. A root of a polynomial is a zero of the corresponding polynomial function. The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically closed extension) counted with their multiplicities. For example, the polynomial f of degree two, defined by f(x)=x^2-5x+6=(x-2)(x-3) has the two roots (or zeros) that are 2 and 3. f(2)=2^2-5\times 2+6= 0\textf(3)=3^2-5\times 3+6=0. If the function maps real numbers to real n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Field (mathematics)
In mathematics, a field is a set (mathematics), set on which addition, subtraction, multiplication, and division (mathematics), division are defined and behave as the corresponding operations on rational number, rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as field of rational functions, fields of rational functions, algebraic function fields, algebraic number fields, and p-adic number, ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many element (set), elements. The theory of fields proves that angle trisection and squaring the circle cannot be done with a compass and straighte ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Finite Field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are the integers mod n, integers mod p when p is a prime number. The ''order'' of a finite field is its number of elements, which is either a prime number or a prime power. For every prime number p and every positive integer k there are fields of order p^k. All finite fields of a given order are isomorphism, isomorphic. Finite fields are fundamental in a number of areas of mathematics and computer science, including number theory, algebraic geometry, Galois theory, finite geometry, cryptography and coding theory. Properties A finite field is a finite set that is a fiel ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Polynomial
In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative integer powers, and has a finite number of terms. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problem (mathematics education), word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; and they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Testing Against Small Sets Of Bases
Test(s), testing, or TEST may refer to: * Test (assessment), an educational assessment intended to measure the respondents' knowledge or other abilities Arts and entertainment * ''Test'' (2013 film), an American film * ''Test'' (2014 film), a Russian film * ''Test'' (2025 film), an Indian sports drama * Test (group), a jazz collective * ''Tests'' (album), a 1998 album by The Microphones * ''Testing'' (album), an album by ASAP Rocky Computing * .test, a reserved top-level domain * Software testing * test (Unix), a Unix command for evaluating conditional expressions * TEST (x86 instruction), an x86 assembly language instruction People * Test (wrestler), ring name for Andrew Martin (1975–2009), Canadian professional wrestler * John Test (1771–1849), American politician * Zack Test (born 1989), American rugby union player Science and technology * Experiment, a procedure carried out in order to test a hypothesis * Statistical hypothesis test, techniques to reach conclus ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Maple (software)
Maple is a symbolic and numeric computing environment as well as a multi-paradigm programming language. It covers several areas of technical computing, such as symbolic mathematics, numerical analysis, data processing, visualization, and others. A toolbox, MapleSim, adds functionality for multidomain physical modeling and code generation. Maple's capacity for symbolic computing include those of a general-purpose computer algebra system. For instance, it can manipulate mathematical expressions and find symbolic solutions to certain problems, such as those arising from ordinary and partial differential equations. Maple is developed commercially by the Canadian software company Maplesoft. The name 'Maple' is a reference to the software's Canadian heritage. Overview Core functionality Users can enter mathematics in traditional mathematical notation. Custom user interfaces can also be created. There is support for numeric computations, to arbitrary precision, as well as symbo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Modular Arithmetic
In mathematics, modular arithmetic is a system of arithmetic operations for integers, other than the usual ones from elementary arithmetic, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book '' Disquisitiones Arithmeticae'', published in 1801. A familiar example of modular arithmetic is the hour hand on a 12-hour clock. If the hour hand points to 7 now, then 8 hours later it will point to 3. Ordinary addition would result in , but 15 reads as 3 on the clock face. This is because the hour hand makes one rotation every 12 hours and the hour number starts over when the hour hand passes 12. We say that 15 is ''congruent'' to 3 modulo 12, written 15 ≡ 3 (mod 12), so that 7 + 8 ≡ 3 (mod 12). Similarly, if one starts at 12 and waits 8 hours, the hour hand will be at 8. If one instead waited twice as long, 16 hours, the hour hand would be on 4. This ca ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
False Positive
A false positive is an error in binary classification in which a test result incorrectly indicates the presence of a condition (such as a disease when the disease is not present), while a false negative is the opposite error, where the test result incorrectly indicates the absence of a condition when it is actually present. These are the two kinds of errors in a binary test, in contrast to the two kinds of correct result (a and a ). They are also known in medicine as a false positive (or false negative) diagnosis, and in statistical classification as a false positive (or false negative) error. In statistical hypothesis testing, the analogous concepts are known as type I and type II errors, where a positive result corresponds to rejecting the null hypothesis, and a negative result corresponds to not rejecting the null hypothesis. The terms are often used interchangeably, but there are differences in detail and interpretation due to the differences between medical testing and sta ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |