Mersenne's Conjecture
   HOME





Mersenne's Conjecture
In mathematics, the Mersenne conjectures concern the characterization of a kind of prime numbers called Mersenne primes, meaning prime numbers that are a power of two minus one. Original Mersenne conjecture The original, called Mersenne's conjecture, was a statement by Marin Mersenne in his ''Cogitata Physico-Mathematica'' (1644; see e.g. Dickson 1919) that the numbers 2^n - 1 were prime for ''n'' = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127 and 257 , and were composite for all other positive integers ''n'' ≤ 257. The first seven entries of his list (2^n - 1 for ''n'' = 2, 3, 5, 7, 13, 17, 19) had already been proven to be primes by trial division before Mersenne's time; only the last four entries were new claims by Mersenne. Due to the size of those last numbers, Mersenne did not and could not test all of them, nor could his peers in the 17th century. It was eventually determined, after three centuries and the availability of new techniques such as the Lucas–Lehmer test, that Merse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Proof
A mathematical proof is a deductive reasoning, deductive Argument-deduction-proof distinctions, argument for a Proposition, mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning that establish logical certainty, to be distinguished from empirical evidence, empirical arguments or non-exhaustive inductive reasoning that establish "reasonable expectation". Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in ''all'' possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture, or a hypothesis if frequently used as an assumption for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Mathematical Monthly
''The American Mathematical Monthly'' is a peer-reviewed scientific journal of mathematics. It was established by Benjamin Finkel in 1894 and is published by Taylor & Francis on behalf of the Mathematical Association of America. It is an expository journal intended for a wide audience of mathematicians, from undergraduate students to research professionals. Articles are chosen on the basis of their broad interest and reviewed and edited for quality of exposition as well as content. The editor-in-chief An editor-in-chief (EIC), also known as lead editor or chief editor, is a publication's editorial leader who has final responsibility for its operations and policies. The editor-in-chief heads all departments of the organization and is held accoun ... is Vadim Ponomarenko ( San Diego State University). The journal gives the Lester R. Ford Award annually to "authors of articles of expository excellence" published in the journal. Editors-in-chief The following persons are or have ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mersenne's Laws
Mersenne's laws are laws describing the frequency of oscillation of a stretched string or monochord, useful in musical tuning and musical instrument construction. Overview The equation was first proposed by French mathematician and music theorist Marin Mersenne in his 1636 work '' Harmonie universelle''.Mersenne, Marin (1636)''Harmonie universelle'' Cited in, '' Wolfram.com''. Mersenne's laws govern the construction and operation of string instruments, such as pianos and harps, which must accommodate the total tension force required to keep the strings at the proper pitch. Lower strings are thicker, thus having a greater mass per length. They typically have lower tension. Guitars are a familiar exception to this: string tensions are similar, for playability, so lower string pitch is largely achieved with increased mass per length. Higher-pitched strings typically are thinner, have higher tension, and may be shorter. "This result does not differ substantially from Galileo's, yet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Catalan's Mersenne Conjecture
In mathematics, a double Mersenne number is a Mersenne number of the form :M_ = 2^-1 where ''p'' is prime. Examples The first four terms of the sequence of double Mersenne numbers areChris Caldwell''Mersenne Primes: History, Theorems and Lists''at the Prime Pages. : :M_ = M_3 = 7 :M_ = M_7 = 127 :M_ = M_ = 2147483647 :M_ = M_ = 170141183460469231731687303715884105727 Double Mersenne primes A double Mersenne number that is prime is called a double Mersenne prime. Since a Mersenne number ''M''''p'' can be prime only if ''p'' is prime, (see Mersenne prime for a proof), a double Mersenne number M_ can be prime only if ''M''''p'' is itself a Mersenne prime. For the first values of ''p'' for which ''M''''p'' is prime, M_ is known to be prime for ''p'' = 2, 3, 5, 7 while explicit factors of M_ have been found for ''p'' = 13, 17, 19, and mersenne prime 31. Thus, the smallest candidate for the next double Mersenne prime is M_, or 22305843009213693951 − 1. Being approximatel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lucas Primality Test
In computational number theory, the Lucas test is a primality test for a natural number ''n''; it requires that the prime factors of ''n'' − 1 be already known. It is the basis of the Pratt certificate that gives a concise verification that ''n'' is prime. Concepts Let ''n'' be a positive integer. If there exists an integer ''a'', 1 < ''a'' < ''n'', such that :a^\ \equiv\ 1 \pmod n \, and for every prime factor ''q'' of ''n'' − 1 :a^\ \not\equiv\ 1 \pmod n \, then ''n'' is prime. If no such number ''a'' exists, then ''n'' is either 1, 2, or composite. The reason for the correctness of this claim is as follows: if the first equivalence holds for ''a'', we can deduce that ''a'' and ''n'' are

Gillies' Conjecture
In number theory, Gillies' conjecture is a conjecture about the distribution of prime divisors of Mersenne numbers and was made by Donald B. Gillies in a 1964 paper in which he also announced the discovery of three new Mersenne primes. The conjecture is a specialization of the prime number theorem and is a refinement of conjectures due to I. J. Good and Daniel Shanks. The conjecture remains an open problem: several papers give empirical support, but it disagrees with the widely accepted (but also open) Lenstra–Pomerance–Wagstaff conjecture. The conjecture :\textA < B < \sqrt\textB/A\textM_p \rightarrow \infty\textM :\text
, B The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coprime
In number theory, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equivalent to their greatest common divisor (GCD) being 1. One says also ''is prime to'' or ''is coprime with'' . The numbers 8 and 9 are coprime, despite the fact that neither—considered individually—is a prime number, since 1 is their only common divisor. On the other hand, 6 and 9 are not coprime, because they are both divisible by 3. The numerator and denominator of a reduced fraction are coprime, by definition. Notation and testing When the integers and are coprime, the standard way of expressing this fact in mathematical notation is to indicate that their greatest common divisor is one, by the formula or . In their 1989 textbook '' Concrete Mathematics'', Ronald Graham, Donald Knuth, and Oren Patashnik proposed an alte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euler–Mascheroni Constant
Euler's constant (sometimes called the Euler–Mascheroni constant) is a mathematical constant, usually denoted by the lowercase Greek letter gamma (), defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by : \begin \gamma &= \lim_\left(-\log n + \sum_^n \frac1\right)\\ px&=\int_1^\infty\left(-\frac1x+\frac1\right)\,\mathrm dx. \end Here, represents the floor function. The numerical value of Euler's constant, to 50 decimal places, is: History The constant first appeared in a 1734 paper by the Swiss mathematician Leonhard Euler, titled ''De Progressionibus harmonicis observationes'' (Eneström Index 43), where he described it as "worthy of serious consideration". Euler initially calculated the constant's value to 6 decimal places. In 1781, he calculated it to 16 decimal places. Euler used the notations and for the constant. The Italian mathematician Lorenzo Mascheroni attempted to calculate the constant to 32 dec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


The Prime Pages
The PrimePages is a website about prime numbers originally created by Chris Caldwell at the University of Tennessee at Martin who maintained it from 1994 to 2023. The site maintains the list of the "5,000 largest known primes", selected smaller primes of special forms, and many "top twenty" lists for primes of various forms. The PrimePages has articles on primes and primality testing. It includes "The Prime Glossary" with articles on hundreds of glosses related to primes, and "Prime Curios!" with thousands of curios about specific numbers. The database started as a list of "titanic primes" (primes with at least 1000 decimal digits) by Samuel Yates in 1984. On March 11, 2023, the PrimePages moved from primes.utm.edu to t5k.org, and is no longer maintained by Caldwell. See also * List of largest known primes and probable primes *List of prime numbers This is a list of articles about prime numbers. A prime number (or ''prime'') is a natural number greater than 1 that has no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Asymptotic Analysis
In mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing Limit (mathematics), limiting behavior. As an illustration, suppose that we are interested in the properties of a function as becomes very large. If , then as becomes very large, the term becomes insignificant compared to . The function is said to be "''asymptotically equivalent'' to , as ". This is often written symbolically as , which is read as " is asymptotic to ". An example of an important asymptotic result is the prime number theorem. Let denote the prime-counting function (which is not directly related to the constant pi), i.e. is the number of prime numbers that are less than or equal to . Then the theorem states that \pi(x)\sim\frac. Asymptotic analysis is commonly used in computer science as part of the analysis of algorithms and is often expressed there in terms of big O notation. Definition Formally, given functions and , we define a binary relation f( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Samuel S
Samuel is a figure who, in the narratives of the Hebrew Bible, plays a key role in the transition from the biblical judges to the United Kingdom of Israel under Saul, and again in the monarchy's transition from Saul to David. He is venerated as a prophet in Judaism, Christianity, and Islam. In addition to his role in the Bible, Samuel is mentioned in Jewish rabbinical literature, in the Christian New Testament, and in the second chapter of the Quran (although the text does not mention him by name). He is also treated in the fifth through seventh books of '' Antiquities of the Jews'', written by the Jewish scholar Josephus in the first century. He is first called "the Seer" in 1 Samuel 9:9. Biblical account Family Samuel's mother was Hannah and his father was Elkanah. Elkanah lived at Ramathaim in the district of Zuph. His genealogy is also found in a pedigree of the Kohathites (1 Chronicles 6:3–15) and in that of Heman the Ezrahite, apparently his grandson (1 Chron ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]