HOME
*





MOWSE
MOWSE (for MOlecular Weight SEarch) is a method to identify proteins from the molecular weight of peptides created by proteolytic digestion and measured with mass spectrometry. Development The MOWSE algorithm was developed by Darryl Pappin at the Imperial Cancer Research Fund and Alan Bleasby at the SERC Daresbury Laboratory. The probability-based MOWSE score formed the basis of development of Mascot, a proprietary software for protein identification from mass spectrometry data. See also *Peptide mass fingerprinting *Mascot (software) *Genome-based peptide fingerprint scanning Genome-based peptide fingerprint scanning (GFS) is a system in bioinformatics analysis that attempts to identify the genomic origin (that is, what species they come from) of sample proteins by scanning their peptide-mass fingerprint against the the ... References Bioinformatics Mass spectrometry software Proteomics Science and technology in Cheshire {{Bioinformatics-stub de:MOWSE ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mascot (software)
Mascot is a software search engine that uses mass spectrometry data to identify proteins from peptide sequence databases. Mascot is widely used by research facilities around the world. Mascot uses a probabilistic scoring algorithm for protein identification that was adapted from the MOWSE algorithm. Mascot is freely available to use on the website of Matrix Science. A license is required for in-house use where more features can be incorporated. History means MOWSE was one of the first algorithms developed for protein identification using peptide mass fingerprinting. It was originally developed in 1993 as a collaboration between Darryl Pappin of the Imperial Cancer Research Fund (ICRF) and Alan Bleasby of the Science and Engineering Research Council (SERC). MOWSE stood apart from other protein identification algorithms in that it produced a probability-based score for identification. It was also the first to take into account the non-uniform distribution of peptide sizes, ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific 3D structure that determines its activity. A linear chain of amino acid residues is called a polypeptide. A protein contains at least one long polypeptide. Short polypeptides, containing less than 20–30 residues, are rarely considered to be proteins and are commonly called peptides. The individual amino acid residues are bonded together by peptide bonds and adjacent amino acid residues. The sequence of amino acid resid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Molecular Weight
A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and biochemistry, the distinction from ions is dropped and ''molecule'' is often used when referring to polyatomic ions. A molecule may be homonuclear, that is, it consists of atoms of one chemical element, e.g. two atoms in the oxygen molecule (O2); or it may be heteronuclear, a chemical compound composed of more than one element, e.g. water (two hydrogen atoms and one oxygen atom; H2O). In the kinetic theory of gases, the term ''molecule'' is often used for any gaseous particle regardless of its composition. This relaxes the requirement that a molecule contains two or more atoms, since the noble gases are individual atoms. Atoms and complexes connected by non-covalent interactions, such as hydrogen bonds or ionic bonds, are typically not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Peptide
Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. A polypeptide is a longer, continuous, unbranched peptide chain. Hence, peptides fall under the broad chemical classes of biological polymers and oligomers, alongside nucleic acids, oligosaccharides, polysaccharides, and others. A polypeptide that contains more than approximately 50 amino acids is known as a protein. Proteins consist of one or more polypeptides arranged in a biologically functional way, often bound to ligands such as coenzymes and cofactors, or to another protein or other macromolecule such as DNA or RNA, or to complex macromolecular assemblies. Amino acids that have been incorporated into peptides are termed residues. A water molecule is released during formation of each amide bond.. All peptides except cyclic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Proteolysis
Proteolysis is the breakdown of proteins into smaller polypeptides or amino acids. Uncatalysed, the hydrolysis of peptide bonds is extremely slow, taking hundreds of years. Proteolysis is typically catalysed by cellular enzymes called proteases, but may also occur by intra-molecular digestion. Proteolysis in organisms serves many purposes; for example, digestive enzymes break down proteins in food to provide amino acids for the organism, while proteolytic processing of a polypeptide chain after its synthesis may be necessary for the production of an active protein. It is also important in the regulation of some physiological and cellular processes including apoptosis, as well as preventing the accumulation of unwanted or misfolded proteins in cells. Consequently, abnormality in the regulation of proteolysis can cause disease. Proteolysis can also be used as an analytical tool for studying proteins in the laboratory, and it may also be used in industry, for example in food pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mass Spectrometry
Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a '' mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used in many different fields and is applied to pure samples as well as complex mixtures. A mass spectrum is a type of plot of the ion signal as a function of the mass-to-charge ratio. These spectra are used to determine the elemental or isotopic signature of a sample, the masses of particles and of molecules, and to elucidate the chemical identity or structure of molecules and other chemical compounds. In a typical MS procedure, a sample, which may be solid, liquid, or gaseous, is ionized, for example by bombarding it with a beam of electrons. This may cause some of the sample's molecules to break up into positively charged fragments or simply become positively charged without fragmenting. These ions (fragments) are then separated acco ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Imperial Cancer Research Fund
Cancer Research UK (CRUK) is the world's largest independent cancer research organization. It is registered as a charity in the United Kingdom and Isle of Man, and was formed on 4 February 2002 by the merger of The Cancer Research Campaign and the Imperial Cancer Research Fund. Cancer Research UK conducts research using both its own staff and grant-funded researchers. It also provides information about cancer and runs campaigns aimed at raising awareness and influencing public policy. The organisation's work is almost entirely funded by the public. It raises money through donations, legacies, community fundraising, events, retail and corporate partnerships. Over 40,000 people are regular volunteers. History The Imperial Cancer Research Fund (ICRF) was founded in 1902 as the Cancer Research Fund, changing its name to the Imperial Cancer Research Fund in 1904. It grew over the next twenty years to become one of the world's leading cancer research charities. Its flagship laborato ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Science And Engineering Research Council
The Science and Engineering Research Council (SERC) and its predecessor the Science Research Council (SRC) were the UK agencies in charge of publicly funded scientific and engineering research activities, including astronomy, biotechnology and biological sciences, space research and particle physics, between 1965 and 1994. History The SERC also had oversight of: * the Royal Greenwich Observatory (RGO) * the Royal Observatory Edinburgh (ROE) * the Rutherford Appleton Laboratory (RAL) * the Daresbury Laboratory From its formation in 1965 until 1981 it was known as the Science Research Council (SRC). The SRC had been formed in 1965 as a result of the Trend Committee enquiry into the organisation of civil science in the UK. Previously the Minister for Science had been responsible for various research activities in the Department of Scientific and Industrial Research (DSIR) and more loosely with a variety of agencies concerned with the formulation of civil scientific policy. On ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Daresbury Laboratory
Daresbury Laboratory is a scientific research laboratory based at Sci-Tech Daresbury campus near Daresbury in Halton, Cheshire, England. The laboratory began operations in 1962 and was officially opened on 16 June 1967 as the Daresbury Nuclear Physics Laboratory by the then Prime Minister of United Kingdom, Harold Wilson. It was the second national laboratory established by the British National Institute for Research in Nuclear Science, following the Rutherford High Energy Laboratory (now Rutherford Appleton Laboratory). It is operated by the Science and Technology Facilities Council, part of UK Research and Innovation. As of 2018, it employs around 300 staff, with Paul Vernon appointed as director in November 2020, taking over from Professor Susan Smith who had been director from 2012. Description Daresbury Laboratory carries out research in fields such as accelerator science, bio-medicine, physics, chemistry, materials, engineering and computational science. Its facilities a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Peptide Mass Fingerprinting
Peptide mass fingerprinting (PMF) (also known as protein fingerprinting) is an analytical technique for protein identification in which the unknown protein of interest is first cleaved into smaller peptides, whose absolute masses can be accurately measured with a mass spectrometer such as MALDI-TOF or ESI-TOF. The method was developed in 1993 by several groups independently. The peptide masses are compared to either a database containing known protein sequences or even the genome. This is achieved by using computer programs that translate the known genome of the organism into proteins, then theoretically cut the proteins into peptides, and calculate the absolute masses of the peptides from each protein. They then compare the masses of the peptides of the unknown protein to the theoretical peptide masses of each protein encoded in the genome. The results are statistically analyzed to find the best match. The advantage of this method is that only the masses of the peptides have to b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Genome-based Peptide Fingerprint Scanning
Genome-based peptide fingerprint scanning (GFS) is a system in bioinformatics analysis that attempts to identify the genomic origin (that is, what species they come from) of sample proteins by scanning their peptide-mass fingerprint against the theoretical translation and proteolytic digest of an entire genome. This method is an improvement from previous methods because it compares the peptide fingerprints to an entire genome instead of comparing it to an already annotated genome. This improvement has the potential to improve genome annotation and identify proteins with incorrect or missing annotations. History and background GFS was designed by Michael C. Giddings (University of North Carolina, Chapel Hill) et al., and released in 2003. Giddings expanded the algorithms for GFS from earlier ideas. Two papers were published in 1993 explaining the techniques used to identify proteins in sequence databases. These methods determined the mass of peptides using mass spectrometry, and th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]