HOME





MFSD1
Major facilitator superfamily domain containing 1 (MFSD1, SMAP) is a protein belonging to the MFS Pfam clan. It is an Atypical solute carrier. It belongs to the major facilitator superfamily MFS Pfam Pfam is a database of protein families that includes their annotations and multiple sequence alignments generated using hidden Markov models. The latest version of Pfam, 37.0, was released in June 2024 and contains 21,979 families. It is cur ... Clan. MFSD1 has been identified in neuronal plasma membranes and lysosomes. MFSD1 belongs to AMTF6. References {{Reflist Transmembrane proteins ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Atypical MFS Transporter Family
Atypical Solute Carrier Families (Atypical SLCs) are novel plausible secondary active or facilitative transporter proteins that share ancestral background with the known solute carrier families (SLCs). However, they have not been assigned a name according to the SLC root system, or been classified into any of the existing SLC families. Atypical major facilitator superfamily transport families Most atypical SLCs are families within the major facilitator superfamily (MFS). These atypical SLCs are plausible secondary active or facilitative transporter proteins that share ancestry with the known solute carriers. They are, however, not named according to the SLC root system, or classified into any of the existing SLC families. Atypical MFS transporter families (ATMFs) are categorised based on their sequence similarity and phylogenetic closeness. Some Atypical SLC of MFS type are: OCA2, CLN3, SPNS1, SPNS2, SPNS3, SV2A, SV2B, SV2C, SVOP, SVOPL, MFSD1, MFSD2A, MFSD2B, MFSD3, MFSD4A, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Major Facilitator Superfamily
The major facilitator superfamily (MFS) is a Protein superfamily, superfamily of membrane transport proteins that facilitate movement of small solutes across cell membranes in response to chemiosmosis, chemiosmotic gradients. Function The major facilitator superfamily (MFS) are membrane proteins which are expressed ubiquitously in all kingdoms of life for the import or export of target substrates. The MFS family was originally believed to function primarily in the uptake of sugars but subsequent studies revealed that drugs, metabolites, oligosaccharides, amino acids and oxyanions were all transported by MFS family members. These proteins energetically drive transport utilizing the electrochemical gradient of the target substrate (uniporter), or act as a cotransporter where transport is coupled to the movement of a second substrate. Fold The basic fold of the MFS transporter is built around 12, or in some cases, 14 transmembrane helix, transmembrane helices (TMH), with two 6- (o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Solute Carrier Family
The solute carrier (SLC) group of membrane transport proteins include over 400 members organized into 66 families. Most members of the SLC group are located in the cell membrane. The SLC gene nomenclature system was originally proposed by the HUGO Gene Nomenclature Committee (HGNC) and is the basis for the official HGNC names of the genes that encode these transporters. A more general transmembrane transporter classification can be found in TCDB, TCDB database. Solutes that are transported by the various SLC group members are extremely diverse and include both charged and uncharged organic molecules as well as inorganic ions and the gas Ammonia transporter, ammonia. As is typical of integral membrane proteins, SLCs contain a number of hydrophobic transmembrane Alpha helix, alpha helices connected to each other by hydrophilic intra- and extra-cellular loops. Depending on the SLC, these transporters are functional as either monomers or obligate homo- or hetero-oligomers. Many SLC fam ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metabolic reactions, DNA replication, Cell signaling, responding to stimuli, providing Cytoskeleton, structure to cells and Fibrous protein, organisms, and Intracellular transport, transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the Nucleic acid sequence, nucleotide sequence of their genes, and which usually results in protein folding into a specific Protein structure, 3D structure that determines its activity. A linear chain of amino acid residues is called a polypeptide. A protein contains at least one long polypeptide. Short polypeptides, containing less than 20–30 residues, are rarely considered to be proteins and are commonly called pep ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pfam
Pfam is a database of protein families that includes their annotations and multiple sequence alignments generated using hidden Markov models. The latest version of Pfam, 37.0, was released in June 2024 and contains 21,979 families. It is currently provided through InterPro website. Uses The general purpose of the Pfam database is to provide a complete and accurate classification of protein families and domains. Originally, the rationale behind creating the database was to have a semi-automated method of curating information on known protein families to improve the efficiency of annotating genomes. The Pfam classification of protein families has been widely adopted by biologists because of its wide coverage of proteins and sensible naming conventions. It is used by experimental biologists researching specific proteins, by structural biologists to identify new targets for structure determination, by computational biologists to organise sequences and by evolutionary biologis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]