Lévy Family Of Graphs
In graph theory, a branch of mathematics, a Lévy family of graphs is a family of graphs ''G''''n'', ''n'' = 1, 2, 3, ..., which possess a certain type of "compactness" or "tangledness". Many naturally occurring families of graphs are Lévy families. Many mathematicians have noted this fact and have expressed surprise that it does not appear to have a ready explanation. Formally, a family of graphs ''Gn'', ''n'' = 1, 2, 3, ..., is a Lévy family if, for any \varepsilon>0 : \lim_\alpha\left(G_n,\varepsilon\right) =0 where : \alpha(G,\varepsilon) = \max \left\. Here ''D'' is the graph diameter of ''G'', and ''A''(''n'') is the ''n''- graph neighborhood of ''A''. Note that the maximization ranges over subsets ''A'' of ''G'', subject to ''A'' being over half the size of ''G'' In words, this means that one can take a subset of size at least half of ''G'', and blow it up by only \epsilon of the graph diameter, and end up with nea ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graph Theory
In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph theory), vertices'' (also called ''nodes'' or ''points'') which are connected by ''Glossary of graph theory terms#edge, edges'' (also called ''arcs'', ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a Set (mathematics), set of vertices (also called nodes or points); * ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graph (discrete Mathematics)
In discrete mathematics, particularly in graph theory, a graph is a structure consisting of a Set (mathematics), set of objects where some pairs of the objects are in some sense "related". The objects are represented by abstractions called ''Vertex (graph theory), vertices'' (also called ''nodes'' or ''points'') and each of the related pairs of vertices is called an ''edge'' (also called ''link'' or ''line''). Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges. The edges may be directed or undirected. For example, if the vertices represent people at a party, and there is an edge between two people if they shake hands, then this graph is undirected because any person ''A'' can shake hands with a person ''B'' only if ''B'' also shakes hands with ''A''. In contrast, if an edge from a person ''A'' to a person ''B'' means that ''A'' owes money to ''B'', then this graph is directed, because owing mon ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graph Diameter
In graph theory, the diameter of a connected undirected graph is the farthest distance between any two of its vertices. That is, it is the diameter of a set for the set of vertices of the graph, and for the shortest-path distance in the graph. Diameter may be considered either for weighted or for unweighted graphs. Researchers have studied the problem of computing the diameter, both in arbitrary graphs and in special classes of graphs. The diameter of a disconnected graph may be defined to be infinite, or undefined. Graphs of low diameter The degree diameter problem seeks tight relations between the diameter, number of vertices, and degree of a graph. One way of formulating it is to ask for the largest graph with given bounds on its degree and diameter. For any fixed degree, this maximum size is exponential in diameter, with the base of the exponent depending on the degree. The girth of a graph, the length of its shortest cycle, can be at most 2k+1 for a graph of diameter k ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graph Neighborhood
Graph may refer to: Mathematics *Graph (discrete mathematics), a structure made of vertices and edges **Graph theory, the study of such graphs and their properties * Graph (topology), a topological space resembling a graph in the sense of discrete mathematics *Graph of a function * Graph of a relation *Graph paper *Chart, a means of representing data (also called a graph) Computing *Graph (abstract data type), an abstract data type representing relations or connections *graph (Unix), Unix command-line utility *Conceptual graph, a model for knowledge representation and reasoning *Microsoft Graph, a Microsoft API developer platform that connects multiple services and devices Other uses * HMS ''Graph'', a submarine of the UK Royal Navy See also * Complex network *Graf *Graff (other) *Graph database *Grapheme, in linguistics *Graphemics *Graphic (other) *-graphy (suffix from the Greek for "describe," "write" or "draw") *List of information graphics software *Stati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cycle Graph
In graph theory, a cycle graph or circular graph is a graph that consists of a single cycle, or in other words, some number of vertices (at least 3, if the graph is simple) connected in a closed chain. The cycle graph with vertices is called . The number of vertices in equals the number of edges, and every vertex has degree 2; that is, every vertex has exactly two edges incident with it. If n = 1, it is an isolated loop. Terminology There are many synonyms for "cycle graph". These include simple cycle graph and cyclic graph, although the latter term is less often used, because it can also refer to graphs which are merely not acyclic. Among graph theorists, cycle, polygon, or ''n''-gon are also often used. The term ''n''-cycle is sometimes used in other settings. A cycle with an even number of vertices is called an even cycle; a cycle with an odd number of vertices is called an odd cycle. Properties A cycle graph is: * 2-edge colorable, if and only if it has an even n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hypercube Graph
In graph theory, the hypercube graph is the graph formed from the vertices and edges of an -dimensional hypercube. For instance, the cubical graph, cube graph is the graph formed by the 8 vertices and 12 edges of a three-dimensional cube. has vertex (graph theory), vertices, edges, and is a regular graph with edges touching each vertex. The hypercube graph may also be constructed by creating a vertex for each subset of an -element set, with two vertices adjacent when their subsets differ in a single element, or by creating a vertex for each -digit binary number, with two vertices adjacent when their binary representations differ in a single digit. It is the -fold Cartesian product of graphs, Cartesian product of the two-vertex complete graph, and may be decomposed into two copies of connected to each other by a perfect matching. Hypercube graphs should not be confused with cubic graphs, which are graphs that have exactly three edges touching each vertex. The only hyperc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Permutation Group
In mathematics, a permutation group is a group ''G'' whose elements are permutations of a given set ''M'' and whose group operation is the composition of permutations in ''G'' (which are thought of as bijective functions from the set ''M'' to itself). The group of ''all'' permutations of a set ''M'' is the symmetric group of ''M'', often written as Sym(''M''). The term ''permutation group'' thus means a subgroup of the symmetric group. If then Sym(''M'') is usually denoted by S''n'', and may be called the ''symmetric group on n letters''. By Cayley's theorem, every group is isomorphic to some permutation group. The way in which the elements of a permutation group permute the elements of the set is called its group action. Group actions have applications in the study of symmetries, combinatorics and many other branches of mathematics, physics and chemistry. Basic properties and terminology A ''permutation group'' is a subgroup of a symmetric group; that is, its elements ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transposition (mathematics)
In mathematics, and in particular in group theory, a cyclic permutation is a permutation consisting of a single cycle. In some cases, cyclic permutations are referred to as cycles; if a cyclic permutation has ''k'' elements, it may be called a ''k''-cycle. Some authors widen this definition to include permutations with fixed points in addition to at most one non-trivial cycle. In Permutation#Cycle notation, cycle notation, cyclic permutations are denoted by the list of their elements enclosed with parentheses, in the order to which they are permuted. For example, the permutation (1 3 2 4) that sends 1 to 3, 3 to 2, 2 to 4 and 4 to 1 is a 4-cycle, and the permutation (1 3 2)(4) that sends 1 to 3, 3 to 2, 2 to 1 and 4 to 4 is considered a 3-cycle by some authors. On the other hand, the permutation (1 3)(2 4) that sends 1 to 3, 3 to 1, 2 to 4 and 4 to 2 is not a cyclic permutation because it separately permutes the pairs and . For the wider definition of a cyclic permutation, allowi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Béla Bollobás
Béla Bollobás FRS (born 3 August 1943) is a Hungarian-born British mathematician who has worked in various areas of mathematics, including functional analysis, combinatorics, graph theory, and percolation. He was strongly influenced by Paul Erdős from the age of 14. Early life and education As a student, he took part in the first three International Mathematical Olympiads, winning two gold medals. Paul Erdős invited Bollobás to lunch after hearing about his victories, and they kept in touch afterward. Bollobás's first publication was a joint publication with ErdősBollobás, Béla; Erdös, Paul, Über graphentheoretische Extremalprobleme (Extremal problems in graph theory), Mat. Lapok 13, 143-152 (1962) on extremal problems in graph theory, written when he was in high school in 1962. With Erdős's recommendation to Harold Davenport and a long struggle for permission from the Hungarian authorities, Bollobás was able to spend an undergraduate year in Cambridge, England. Ho ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe became the first president while Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance over concerns about competing with the '' American Journal of Mathematics''. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influentia ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |