HOME
*





Livingstone Graph
In the mathematical field of graph theory, the Livingstone graph is a distance-transitive graph with 266 vertices and 1463 edges. Its intersection array is . It is the largest distance-transitive graph with degree 11. Algebraic properties The automorphism group of the Livingstone graph is the sporadic simple group J1, and the stabiliser of a point is PSL(2,11). As the stabiliser is maximal in J1, it acts primitively on the graph. As the Livingstone graph is distance-transitive, PSL(2,11) acts transitively on the set of 11 vertices adjacent to a reference vertex ''v'', and also on the set of 12 vertices at distance 4 from ''v''. The second action is equivalent to the standard action of PSL(2,11) on the projective line over F11; the first is equivalent to an exceptional action on 11 points, related to the Paley biplane In combinatorics, combinatorial mathematics, a block design is an incidence structure consisting of a set together with a Family of sets, family of subsets kn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Janko Group J1
In the area of modern algebra known as group theory, the Janko group ''J1'' is a sporadic simple group of order :   233571119 = 175560 : ≈ 2. History ''J1'' is one of the 26 sporadic groups and was originally described by Zvonimir Janko in 1965. It is the only Janko group whose existence was proved by Janko himself and was the first sporadic group to be found since the discovery of the Mathieu groups in the 19th century. Its discovery launched the modern theory of sporadic groups. In 1986 Robert A. Wilson showed that ''J1'' cannot be a subgroup of the monster group. Thus it is one of the 6 sporadic groups called the pariahs. Properties The smallest faithful complex representation of ''J1'' has dimension 56.Jansen (2005), p.123 ''J1'' can be characterized abstractly as the unique simple group with abelian 2-Sylow subgroups and with an involution whose centralizer is isomorphic to the direct product of the group of order two and the alternating group A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symmetric Graph
In the mathematical field of graph theory, a graph is symmetric (or arc-transitive) if, given any two pairs of adjacent vertices and of , there is an automorphism :f : V(G) \rightarrow V(G) such that :f(u_1) = u_2 and f(v_1) = v_2. In other words, a graph is symmetric if its automorphism group acts transitively on ordered pairs of adjacent vertices (that is, upon edges considered as having a direction). Such a graph is sometimes also called -transitive or flag-transitive. By definition (ignoring and ), a symmetric graph without isolated vertices must also be vertex-transitive. Since the definition above maps one edge to another, a symmetric graph must also be edge-transitive. However, an edge-transitive graph need not be symmetric, since might map to , but not to . Star graphs are a simple example of being edge-transitive without being vertex-transitive or symmetric. As a further example, semi-symmetric graphs are edge-transitive and regular, but not vertex-transiti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Distance-transitive Graph
In the mathematical field of graph theory, a distance-transitive graph is a graph such that, given any two vertices and at any distance , and any other two vertices and at the same distance, there is an automorphism of the graph that carries to and to . Distance-transitive graphs were first defined in 1971 by Norman L. Biggs and D. H. Smith. A distance-transitive graph is interesting partly because it has a large automorphism group. Some interesting finite groups are the automorphism groups of distance-transitive graphs, especially of those whose diameter is 2. Examples Some first examples of families of distance-transitive graphs include: * The Johnson graphs. * The Grassmann graphs. * The Hamming Graphs. * The folded cube graphs. * The square rook's graphs. * The hypercube graphs. * The Livingstone graph. Classification of cubic distance-transitive graphs After introducing them in 1971, Biggs and Smith showed that there are only 12 finite trival ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Primitive Graph
Primitive may refer to: Mathematics * Primitive element (field theory) * Primitive element (finite field) * Primitive cell (crystallography) * Primitive notion, axiomatic systems * Primitive polynomial (other), one of two concepts * Primitive function or antiderivative, ''F''′ = ''f'' * Primitive permutation group * Primitive root of unity; See Root of unity * Primitive triangle, an integer triangle whose sides have no common prime factor Sciences * Primitive (phylogenetics), characteristic of an early stage of development or evolution * Primitive equations, a set of nonlinear differential equations that are used to approximate atmospheric flow * Primitive change, a general term encompassing a number of basic molecular alterations in the course of a chemical reaction Computing * Cryptographic primitives, low-level cryptographic algorithms frequently used to build computer security systems * Geometric primitive, the simplest kinds of figures in computer graphics * La ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics, graph theory is the study of '' graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by ''edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Distance-transitive Graph
In the mathematical field of graph theory, a distance-transitive graph is a graph such that, given any two vertices and at any distance , and any other two vertices and at the same distance, there is an automorphism of the graph that carries to and to . Distance-transitive graphs were first defined in 1971 by Norman L. Biggs and D. H. Smith. A distance-transitive graph is interesting partly because it has a large automorphism group. Some interesting finite groups are the automorphism groups of distance-transitive graphs, especially of those whose diameter is 2. Examples Some first examples of families of distance-transitive graphs include: * The Johnson graphs. * The Grassmann graphs. * The Hamming Graphs. * The folded cube graphs. * The square rook's graphs. * The hypercube graphs. * The Livingstone graph. Classification of cubic distance-transitive graphs After introducing them in 1971, Biggs and Smith showed that there are only 12 finite trival ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intersection Array
In the mathematical field of graph theory, a distance-regular graph is a regular graph such that for any two vertices and , the number of vertices at distance from and at distance from depends only upon , , and the distance between and . Every distance-transitive graph is distance-regular. Indeed, distance-regular graphs were introduced as a combinatorial generalization of distance-transitive graphs, having the numerical regularity properties of the latter without necessarily having a large automorphism group. Intersection arrays It turns out that a graph G of diameter d is distance-regular if and only if there is an array of integers \ such that for all 1 \leq j \leq d , b_j gives the number of neighbours of u at distance j+1 from v and c_j gives the number of neighbours of u at distance j - 1 from v for any pair of vertices u and v at distance j on G . The array of integers characterizing a distance-regular graph is known as its intersection array. Co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Automorphism Group
In mathematics, the automorphism group of an object ''X'' is the group consisting of automorphisms of ''X'' under composition of morphisms. For example, if ''X'' is a finite-dimensional vector space, then the automorphism group of ''X'' is the group of invertible linear transformations from ''X'' to itself (the general linear group of ''X''). If instead ''X'' is a group, then its automorphism group \operatorname(X) is the group consisting of all group automorphisms of ''X''. Especially in geometric contexts, an automorphism group is also called a symmetry group. A subgroup of an automorphism group is sometimes called a transformation group. Automorphism groups are studied in a general way in the field of category theory. Examples If ''X'' is a set with no additional structure, then any bijection from ''X'' to itself is an automorphism, and hence the automorphism group of ''X'' in this case is precisely the symmetric group of ''X''. If the set ''X'' has additional str ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sporadic Group
In mathematics, a sporadic group is one of the 26 exceptional groups found in the classification of finite simple groups. A simple group is a group ''G'' that does not have any normal subgroups except for the trivial group and ''G'' itself. The classification theorem states that the list of finite simple groups consists of 18 countably infinite plus 26 exceptions that do not follow such a systematic pattern. These 26 exceptions are the sporadic groups. They are also known as the sporadic simple groups, or the sporadic finite groups. Because it is not strictly a group of Lie type, the Tits group is sometimes regarded as a sporadic group, in which case there would be 27 sporadic groups. The monster group is the largest of the sporadic groups, and all but six of the other sporadic groups are subquotients of it. Names Five of the sporadic groups were discovered by Mathieu in the 1860s and the other 21 were found between 1965 and 1975. Several of these groups were predicted to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simple Group
SIMPLE Group Limited is a conglomeration of separately run companies that each has its core area in International Consulting. The core business areas are Legal Services, Fiduciary Activities, Banking Intermediation and Corporate Service. The date of incorporation is listed as 1999 by Companies House of Gibraltar, who class it as a holding company; however it is understood that SIMPLE Group's business and trading activities date to the second part of the 90s, probably as an incorporated body. SIMPLE Group Limited is a conglomerate that cultivate secrecy, they are not listed on any Stock Exchange and the group is owned by a complicated series of offshore trust An offshore trust is a conventional trust that is formed under the laws of an offshore jurisdiction. Generally offshore trusts are similar in nature and effect to their onshore counterparts; they involve a settlor transferring (or 'settling') ...s. The Sunday Times stated that SIMPLE Group's interests could be evalua ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Linear Group
In mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space ''V'' on the associated projective space P(''V''). Explicitly, the projective linear group is the quotient group :PGL(''V'') = GL(''V'')/Z(''V'') where GL(''V'') is the general linear group of ''V'' and Z(''V'') is the subgroup of all nonzero scalar transformations of ''V''; these are quotiented out because they act trivially on the projective space and they form the kernel of the action, and the notation "Z" reflects that the scalar transformations form the center of the general linear group. The projective special linear group, PSL, is defined analogously, as the induced action of the special linear group on the associated projective space. Explicitly: :PSL(''V'') = SL(''V'')/SZ(''V'') where SL(''V'') is the special linear group over ''V'' and SZ(''V'') ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]