HOME
*



picture info

Lithium-ion
A lithium-ion or Li-ion battery is a type of rechargeable battery which uses the reversible reduction of lithium ions to store energy. It is the predominant battery type used in portable consumer electronics and electric vehicles. It also sees significant use for grid-scale energy storage and military and aerospace applications. Compared to other rechargeable battery technologies, Li-ion batteries have high energy densities, low self-discharge, and no memory effect (although a small memory effect reported in LFP cells has been traced to poorly made cells). Chemistry, performance, cost and safety characteristics vary across types of lithium-ion batteries. Most commercial Li-ion cells use intercalation compounds as the active materials. The anode or negative electrode is usually graphite, although silicon-carbon is also being increasingly used. Cells can be manufactured to prioritize either energy or power density. Handheld electronics mostly use lithium polymer batteries (w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Battery Storage Power Station
A battery storage power station is a type of energy storage power station that uses a group of batteries to store electrical energy. Battery storage is the fastest responding dispatchable source of power on electric grids, and it is used to stabilise those grids, as battery storage can transition from standby to full power within milliseconds to deal with grid failures. At full rated power, battery storage power stations are generally designed to output for up to a few hours. Battery storage can be used for short-term peak power and ancillary services, such as providing operating reserve and frequency control to minimize the chance of power outages. They are often installed at, or close to, other active or disused power stations and may share the same grid connection to reduce costs. Since battery storage plants require no deliveries of fuel, are compact compared to generating stations and have no chimneys or large cooling systems, they can be rapidly installed and placed if n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lithium Polymer Battery
A lithium polymer battery, or more correctly lithium-ion polymer battery (abbreviated as LiPo, LIP, Li-poly, lithium-poly and others), is a rechargeable battery of lithium-ion technology using a polymer electrolyte instead of a liquid electrolyte. High conductivity semisolid (gel) polymers form this electrolyte. These batteries provide higher specific energy than other lithium battery types and are used in applications where weight is a critical feature, such as mobile devices, radio-controlled aircraft and some electric vehicles. History LiPo cells follow the history of lithium-ion and lithium-metal cells which underwent extensive research during the 1980s, reaching a significant milestone with Sony's first commercial cylindrical Li-ion cell in 1991. After that, other packaging forms evolved, including the flat pouch format. Design origin and terminology Lithium polymer cells have evolved from lithium-ion and lithium-metal batteries. The primary difference is that instead ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Akira Yoshino
is a Japanese chemist. He is a fellow of Asahi Kasei Corporation and a professor at Meijo University in Nagoya. He created the first safe, production-viable lithium-ion battery which became used widely in cellular phones and notebook computers. Yoshino was awarded the Nobel Prize in Chemistry in 2019 alongside M. Stanley Whittingham and John B. Goodenough. Early life and education Yoshino was born in Suita, Japan, on 30 January 1948. He graduated from Kitano High School in Osaka City (1966). He earned a B.S. in 1970 and an M.S. degree in 1972, both in engineering from Kyoto University, and a Dr.Eng. degree from Osaka University in 2005. During his college years, Yoshino had attended a course taught by Kenichi Fukui, the first Asian to become a Nobel Laureate in chemistry. Career Yoshino spent his entire non-academic career at Asahi Kasei Corporation. Immediately after graduating with his master's degree in 1972, Yoshino began working at Asahi Kasei. He began work in the Ka ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lithium
Lithium (from el, λίθος, lithos, lit=stone) is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense solid element. Like all alkali metals, lithium is highly reactive and flammable, and must be stored in vacuum, inert atmosphere, or inert liquid such as purified kerosene or mineral oil. When cut, it exhibits a metallic luster, but moist air corrodes it quickly to a dull silvery gray, then black tarnish. It never occurs freely in nature, but only in (usually ionic) compounds, such as pegmatitic minerals, which were once the main source of lithium. Due to its solubility as an ion, it is present in ocean water and is commonly obtained from brines. Lithium metal is isolated electrolytically from a mixture of lithium chloride and potassium chloride. The nucleus of the lithium atom verges on instability, since the two stable lithium isotopes foun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Energy Density
In physics, energy density is the amount of energy stored in a given system or region of space per unit volume. It is sometimes confused with energy per unit mass which is properly called specific energy or . Often only the ''useful'' or extractable energy is measured, which is to say that inaccessible energy (such as rest mass energy) is ignored. In cosmological and other general relativistic contexts, however, the energy densities considered are those that correspond to the elements of the stress–energy tensor and therefore do include mass energy as well as energy densities associated with pressure. Energy per unit volume has the same physical units as pressure and in many situations is synonymous. For example, the energy density of a magnetic field may be expressed as and behaves like a physical pressure. Likewise, the energy required to compress a gas to a certain volume may be determined by multiplying the difference between the gas pressure and the external pressure by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Battery Cycle
A charge cycle is the process of charging a rechargeable battery and discharging it as required into a load. The term is typically used to specify a battery's expected life, as the number of charge cycles affects life more than the mere passage of time. Discharging the battery fully before recharging may be called "deep discharge"; partially discharging then recharging may be called "shallow discharge". A "charge cycle" is not a unit of time; the length of time spent charging or discharging does not affect the number of charge cycles. Each battery is affected differently by charge cycles. In general, number of cycles for a rechargeable battery indicates how many times it can undergo the process of complete charging and discharging until failure or starting to lose capacity. Apple Inc. clarifies that a charge cycle means using all the battery's capacity, but not necessarily by discharging it from 100% to 0%: "You complete one charge cycle when you’ve used (discharged) an amount t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

John Goodenough
John Bannister Goodenough ( ; born July 25, 1922) is an American materials scientist, a solid-state physicist, and a Nobel laureate in chemistry. He is a professor of Mechanical, Materials Science, and Electrical Engineering at the University of Texas at Austin. He is widely credited with the identification and development of the lithium-ion battery, for developing the Goodenough–Kanamori rules in determining the sign of the magnetic superexchange in materials, and for seminal developments in computer random-access memory. Goodenough was born in Jena, Germany, to American parents. During and after graduating from Yale University, Goodenough served as a U.S. military meteorologist in World War II. He went on to obtain his Ph.D. in physics at the University of Chicago, became a researcher at MIT Lincoln Laboratory, and later the head of the Inorganic Chemistry Laboratory at the University of Oxford. Since 1986, he has been a professor in the school of engineering at UT Austin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rechargeable Battery
A rechargeable battery, storage battery, or secondary cell (formally a type of Accumulator (energy), energy accumulator), is a type of electrical battery which can be charged, discharged into a load, and recharged many times, as opposed to a disposable or primary battery, which is supplied fully charged and discarded after use. It is composed of one or more electrochemical cells. The term "accumulator" is used as it accumulator (energy), accumulates and energy storage, stores energy through a reversible electrochemical Chemical reaction, reaction. Rechargeable batteries are produced in many different shapes and sizes, ranging from Button cell#Rechargeable variants, button cells to megawatt systems connected to grid energy storage, stabilize an electrical distribution network. Several different combinations of electrode materials and electrolytes are used, including lead–acid battery, lead–acid, zinc–air battery, zinc–air, nickel–cadmium battery, nickel–cadmium (Ni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electrification Of Transport
An electric vehicle (EV) is a vehicle that uses one or more electric motors for propulsion. It can be powered by a collector system, with electricity from extravehicular sources, or it can be powered autonomously by a battery (sometimes charged by solar panels, or by converting fuel to electricity using fuel cells or a generator). EVs include, but are not limited to, road and rail vehicles, surface and underwater vessels, electric aircraft and electric spacecraft. For road vehicles, together with other emerging automotive technologies such as autonomous driving, connected vehicles and shared mobility, EVs form a future mobility vision called Connected, Autonomous, Shared and Electric (CASE) Mobility. EVs first came into existence in the late 19th century, when electricity was among the preferred methods for motor vehicle propulsion, providing a level of comfort and ease of operation that could not be achieved by the gasoline cars of the time. Internal combustion engine ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electric Vehicle
An electric vehicle (EV) is a vehicle that uses one or more electric motors for propulsion. It can be powered by a collector system, with electricity from extravehicular sources, or it can be powered autonomously by a battery (sometimes charged by solar panels, or by converting fuel to electricity using fuel cells or a generator). EVs include, but are not limited to, road and rail vehicles, surface and underwater vessels, electric aircraft and electric spacecraft. For road vehicles, together with other emerging automotive technologies such as autonomous driving, connected vehicles and shared mobility, EVs form a future mobility vision called Connected, Autonomous, Shared and Electric (CASE) Mobility. EVs first came into existence in the late 19th century, when electricity was among the preferred methods for motor vehicle propulsion, providing a level of comfort and ease of operation that could not be achieved by the gasoline cars of the time. Internal combustion engin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lithium–silicon Battery
Lithium–silicon battery is a name used for a subclass of lithium-ion battery technology that employs a silicon-based anode#Battery or galvanic cell anode, anode and lithium ions as the charge carriers. Silicon based materials generally have a much larger specific capacity, for example 3600 mAh/g for pristine silicon, relative to graphite, which is limited to a maximum theoretical capacity of 372 mAh/g for the fully lithiated state LiC6.Shao, Gaofeng, et al. ''Polymer derived SiOC integrated with graphene aerogel as highly stable Li-ion battery anodes''
ACS Appl. Mater. Interfaces 2020, 12, 41, 46045–46056
Silicon's large volume change (approximately 400% based on crystallographic densities) when lithium is inserted is one of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lithium Ion Manganese Oxide Battery
A lithium ion manganese oxide battery (LMO) is a lithium-ion cell that uses manganese dioxide, , as the cathode material. They function through the same intercalation/de-intercalation mechanism as other commercialized secondary battery technologies, such as . Cathodes based on manganese-oxide components are earth-abundant, inexpensive, non-toxic, and provide better thermal stability. Compounds Spinel One of the more studied manganese oxide-based cathodes is , a cation ordered member of the spinel structural family (space group Fd3m). In addition to containing inexpensive materials, the three-dimensional structure of lends itself to high rate capability by providing a well connected framework for the insertion and de-insertion of ions during discharge and charge of the battery. In particular, the ions occupy the tetrahedral sites within the polyhedral frameworks adjacent to empty octahedral sites. As a consequence of this structural arrangement, batteries based on cathodes h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]