HOME



picture info

List Of Baryons
Baryons are composite particles made of three quarks, as opposed to mesons, which are composite particles made of an equal number of quarks and antiquarks. Baryons and mesons are both hadrons, which are particles composed solely of quarks or both quarks and antiquarks. The term ''baryon'' is derived from the Greek ''"βαρύς"'' (''barys''), meaning "heavy", because, at the time of their naming, it was believed that baryons were characterized by having greater masses than other particles that were classed as matter. Pentaquarks are exotic baryons composed of four quarks and one antiquark. In 2015, the LHCb collaboration at CERN definitively reported the observation of pentaquark states in the decay of bottom lambda baryons (Λ).R. Aaij ''et al''. (2015) Since then, additional pentaquark states have been discovered, including new observations in 2019 and 2022. While primarily created in laboratory conditions, pentaquarks might also form naturally during neutron star formatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quark Structure Proton
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly observable matter is composed of up quarks, down quarks and electrons. Owing to a phenomenon known as '' color confinement'', quarks are never found in isolation; they can be found only within hadrons, which include baryons (such as protons and neutrons) and mesons, or in quark–gluon plasmas. There is also the theoretical possibility of more exotic phases of quark matter. For this reason, much of what is known about quarks has been drawn from observations of hadrons. Quarks have various intrinsic properties, including electric charge, mass, color charge, and spin. They are the only elementary particles in the Standard Model of particle physics to experience all four fundamental interactions, also known as ''fundamental forces'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matter
In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic particles. In everyday as well as scientific usage, ''matter'' generally includes atoms and anything made up of them, and any particles (or combination of particles) that act as if they have both rest mass and volume. However it does not include massless particles such as photons, or other energy phenomena or waves such as light or heat. Matter exists in various states (also known as phases). These include classical everyday phases such as solid, liquid, and gas – for example water exists as ice, liquid water, and gaseous steam – but other states are possible, including plasma, Bose–Einstein condensates, fermionic condensates, and quark–gluon plasma. Usually atoms can be imagined as a nucleus of protons and neu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Charm Quark
The charm quark, charmed quark, or c quark is an elementary particle found in composite subatomic particles called hadrons such as the J/psi meson and the charmed baryons created in particle accelerator collisions. Several bosons, including the W and Z bosons and the Higgs boson, can decay into charm quarks. All charm quarks carry Charm (quantum number), charm, a quantum number. This second-Generation (particle physics), generation particle is the third-most-massive quark, with a mass of as measured in 2022, and a charge of + Elementary charge, ''e''. The existence of the charm quark was first predicted by James Bjorken and Sheldon Glashow in 1964, and in 1970, Glashow, John Iliopoulos, and Luciano Maiani showed how its existence would account for experimental and theoretical discrepancies. In 1974, its existence was confirmed through the independent discoveries of the J/psi meson at Brookhaven National Laboratory and the Stanford Linear Accelerator Center. In the ne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Strange Quark
The strange quark or s quark (from its symbol, s) is the third lightest of all quarks, a type of elementary particle. Strange quarks are found in subatomic particles called hadrons. Examples of hadrons containing strange quarks include kaons (), strange D mesons (), Sigma baryons (), and other strange particles. According to the IUPAP, the symbol s is the official name, while "strange" is to be considered only as a mnemonic. The name sideways has also been used because the s quark (but also the other three remaining quarks) has an isospin, I value of 0 while the u ("up") and d ("down") quarks have values of + and − respectively. Along with the charm quark, it is part of the generation (physics), second generation of matter. It has an electric charge of  elementary charge, ''e'' and a bare mass of . Like all quarks, the strange quark is an elementary particle, elementary fermion with Spin (physics), spin spin-1/2, , and experiences all four fundamental interactions: gravit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Down Quark
The down quark (symbol: d) is a type of elementary particle, and a major constituent of matter. The down quark is the second-lightest of all quarks, and combines with other quarks to form composite particles called hadrons. Down quarks are most commonly found in atomic nucleus, atomic nuclei, where it combines with up quarks to form protons and neutrons. The proton is made of one down quark with two up quarks, and the neutron is made up of two down quarks with one up quark. Because they are found in every single known atom, down quarks are present in all everyday matter that we interact with. The down quark is part of the generation (physics), first generation of matter, has an electric charge of − elementary charge, ''e'' and a Quark#Mass, bare mass of . Like all quarks, the down quark is an elementary fermion with Spin (physics), spin spin-1/2, , and experiences all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Up Quark
The up quark or u quark (symbol: u) is the lightest of all quarks, a type of elementary particle, and a significant constituent of matter. It, along with the down quark, forms the neutrons (one up quark, two down quarks) and protons (two up quarks, one down quark) of atomic nucleus, atomic nuclei. It is part of the generation (physics), first generation of matter, has an electric charge of + elementary charge, ''e'' and a Quark#Mass, bare mass of . Like all quarks, the up quark is an elementary particle, elementary fermion with Spin (physics), spin spin-1/2, , and experiences all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. The antiparticle of the up quark is the up antiquark (sometimes called ''antiup quark'' or simply ''antiup''), which differs from it only in that some of its properties, such as electric charge, charge have additive inverse, equal magnitude but opposite sign. Its existence (along with that of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Total Angular Momentum
In quantum mechanics, the total angular momentum quantum number parametrises the total angular momentum of a given particle, by combining its orbital angular momentum and its intrinsic angular momentum (i.e., its spin). If s is the particle's spin angular momentum and ℓ its orbital angular momentum vector, the total angular momentum j is \mathbf j = \mathbf s + \boldsymbol ~. The associated quantum number is the main total angular momentum quantum number ''j''. It can take the following range of values, jumping only in integer steps: \vert \ell - s\vert \le j \le \ell + s where ''ℓ'' is the azimuthal quantum number (parameterizing the orbital angular momentum) and ''s'' is the spin quantum number (parameterizing the spin). The relation between the total angular momentum vector j and the total angular momentum quantum number ''j'' is given by the usual relation (see angular momentum quantum number) \Vert \mathbf j \Vert = \sqrt \, \hbar The vector's ''z''-projection i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isospin
In nuclear physics and particle physics, isospin (''I'') is a quantum number related to the up- and down quark content of the particle. Isospin is also known as isobaric spin or isotopic spin. Isospin symmetry is a subset of the flavour symmetry seen more broadly in the interactions of baryons and mesons. The name of the concept contains the term ''spin'' because its quantum mechanical description is mathematically similar to that of angular momentum (in particular, in the way it couples; for example, a proton–neutron pair can be coupled either in a state of total isospin 1 or in one of 0). But unlike angular momentum, it is a dimensionless quantity and is not actually any type of spin. Before the concept of quarks was introduced, particles that are affected equally by the strong force but had different charges (e.g. protons and neutrons) were considered different states of the same particle, but having isospin values related to the number of charge states. A close exami ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pauli Exclusion Principle
In quantum mechanics, the Pauli exclusion principle (German: Pauli-Ausschlussprinzip) states that two or more identical particles with half-integer spins (i.e. fermions) cannot simultaneously occupy the same quantum state within a system that obeys the laws of quantum mechanics. This principle was formulated by Austrian physicist Wolfgang Pauli in 1925 for electrons, and later extended to all fermions with his spin–statistics theorem of 1940. In the case of electrons in atoms, the exclusion principle can be stated as follows: in a poly-electron atom it is impossible for any two electrons to have the same two values of ''all'' four of their quantum numbers, which are: ''n'', the principal quantum number; ', the azimuthal quantum number; ''m'', the magnetic quantum number; and ''ms'', the spin quantum number. For example, if two electrons reside in the same orbital, then their values of ''n'', ', and ''m'' are equal. In that case, the two values of ''m''s (spin) pair must be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Parity (physics)
In physics, a parity transformation (also called parity inversion) is the flip in the sign of ''one'' spatial coordinate. In three dimensions, it can also refer to the simultaneous flip in the sign of all three spatial coordinates (a point reflection): \mathbf: \beginx\\y\\z\end \mapsto \begin-x\\-y\\-z\end. It can also be thought of as a test for chirality of a physical phenomenon, in that a parity inversion transforms a phenomenon into its mirror image. All fundamental interactions of elementary particles, with the exception of the weak interaction, are symmetric under parity transformation. As established by the Wu experiment conducted at the US National Bureau of Standards by Chinese-American scientist Chien-Shiung Wu, the weak interaction is chiral and thus provides a means for probing chirality in physics. In her experiment, Wu took advantage of the controlling role of weak interactions in radioactive decay of atomic isotopes to establish the chirality of the weak f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Antiproton
The antiproton, , (pronounced ''p-bar'') is the antiparticle of the proton. Antiprotons are stable, but they are typically short-lived, since any collision with a proton will cause both particles to be annihilated in a burst of energy. The existence of the antiproton with electric charge of , opposite to the electric charge of of the proton, was predicted by Paul Dirac in his 1933 Nobel Prize lecture. Dirac received the Nobel Prize for his 1928 publication of his Dirac equation that predicted the existence of positive and negative solutions to Einstein's energy equation (E = mc^2) and the existence of the positron, the antimatter analog of the electron, with opposite charge and spin. The antiproton was first experimentally confirmed in 1955 at the Bevatron particle accelerator by University of California, Berkeley physicists Emilio Segrè and Owen Chamberlain, for which they were awarded the 1959 Nobel Prize in Physics. In terms of valence quarks, an antiproton consists o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Antiparticle
In particle physics, every type of particle of "ordinary" matter (as opposed to antimatter) is associated with an antiparticle with the same mass but with opposite physical charges (such as electric charge). For example, the antiparticle of the electron is the positron (also known as an antielectron). While the electron has a negative electric charge, the positron has a positive electric charge, and is produced naturally in certain types of radioactive decay. The opposite is also true: the antiparticle of the positron is the electron. Some particles, such as the photon, are their own antiparticle. Otherwise, for each pair of antiparticle partners, one is designated as the normal particle (the one that occurs in matter usually interacted with in daily life). The other (usually given the prefix "anti-") is designated the ''antiparticle''. Particle–antiparticle pairs can annihilate each other, producing photons; since the charges of the particle and antiparticle are opposite, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]