Levinson's Theorem
Levinson's theorem is an important theorem in non-relativistic quantum scattering theory. It relates the number of bound states of a potential to the difference in phase of a scattered wave at zero and infinite energies. It was published by Norman Levinson Norman Levinson (August 11, 1912 in Lynn, Massachusetts – October 10, 1975 in Boston) was an American mathematician. Some of his major contributions were in the study of Fourier transforms, complex analysis, non-linear differential equations, ... in 1949. Statement of theorem The difference in the \ell-wave phase shift of a scattered wave at zero energy, \varphi_\ell(0), and infinite energy, \varphi_\ell(\infty), for a spherically symmetric potential V(r) is related to the number of bound states n_\ell by: : \varphi_\ell(0) - \varphi_\ell(\infty) = ( n_\ell + \fracN )\pi \ where N = 0 or 1. The case N = 1 is exceptional and it can only happen in s-wave scattering. The following conditions are sufficient to guarantee ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Theorem
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In the mainstream of mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice, or of a less powerful theory, such as Peano arithmetic. A notable exception is Wiles's proof of Fermat's Last Theorem, which involves the Grothendieck universes whose existence requires the addition of a new axiom to the set theory. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nonrelativistic Quantum Theory
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science. Classical physics, the collection of theories that existed before the advent of quantum mechanics, describes many aspects of nature at an ordinary ( macroscopic) scale, but is not sufficient for describing them at small (atomic and subatomic) scales. Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale. Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values ( quantization); objects have characteristics of both particles and waves (wave–particle duality); and there are limits to how ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bound State
Bound or bounds may refer to: Mathematics * Bound variable * Upper and lower bounds, observed limits of mathematical functions Physics * Bound state, a particle that has a tendency to remain localized in one or more regions of space Geography * Bound Brook (Raritan River), a tributary of the Raritan River in New Jersey * Bound Brook, New Jersey, a borough in Somerset County People * Bound (surname) * Bounds (surname) Arts, entertainment, and media Films * ''Bound'' (1996 film), an American neo-noir film by the Wachowskis * ''Bound'' (2015 film), an American erotic thriller film by Jared Cohn * ''Bound'' (2018 film), a Nigerian romantic drama film by Frank Rajah Arase Television * "Bound" (''Fringe''), an episode of ''Fringe'' * "Bound" (''The Secret Circle''), an episode of ''The Secret Circle'' * "Bound" (''Star Trek: Enterprise''), an episode of ''Star Trek: Enterprise'' Other arts, entertainment, and media * ''Bound'' (video game), a PlayStation 4 game * "Bound", a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Scalar Potential
In mathematical physics, scalar potential, simply stated, describes the situation where the difference in the potential energies of an object in two different positions depends only on the positions, not upon the path taken by the object in traveling from one position to the other. It is a scalar field in three-space: a directionless value ( scalar) that depends only on its location. A familiar example is potential energy due to gravity. A ''scalar potential'' is a fundamental concept in vector analysis and physics (the adjective ''scalar'' is frequently omitted if there is no danger of confusion with ''vector potential''). The scalar potential is an example of a scalar field. Given a vector field , the scalar potential is defined such that: : \mathbf = -\nabla P = - \left( \frac, \frac, \frac \right), where is the gradient of and the second part of the equation is minus the gradient for a function of the Cartesian coordinates . In some cases, mathematicians may use a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Norman Levinson
Norman Levinson (August 11, 1912 in Lynn, Massachusetts – October 10, 1975 in Boston) was an American mathematician. Some of his major contributions were in the study of Fourier transforms, complex analysis, non-linear differential equations, number theory, and signal processing. He worked closely with Norbert Wiener in his early career. He joined the faculty of the Massachusetts Institute of Technology in 1937. In 1954, he was awarded the Bôcher Memorial Prize of the American Mathematical Society and in 1971 the Chauvenet Prize (after winning in 1970 the Lester R. Ford Award) of the Mathematical Association of America for his paper ''A Motivated Account of an Elementary Proof of the Prime Number Theorem''. In 1974 he published a paper proving that more than a third of the zeros of the Riemann zeta function lie on the critical line, a result later improved to two fifths by Conrey. He received both his bachelor's degree and his master's degree in electrical engineering f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Theorems In Quantum Mechanics
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In the mainstream of mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice, or of a less powerful theory, such as Peano arithmetic. A notable exception is Wiles's proof of Fermat's Last Theorem, which involves the Grothendieck universes whose existence requires the addition of a new axiom to the set theory. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |