HOME





Learning With Errors
Learning with errors (LWE) is the computational problem of inferring a linear n-ary function f over a finite ring from given samples y_i = f(\mathbf_i) some of which may be erroneous. The LWE problem is conjectured to be hard to solve, and thus to be useful in cryptography. More precisely, the LWE problem is defined as follows. Let \mathbb_q denote the ring of integers modulo q and let \mathbb_q^n denote the set of n- vectors over \mathbb_q . There exists a certain unknown linear function f:\mathbb_q^n \rightarrow \mathbb_q, and the input to the LWE problem is a sample of pairs (\mathbf,y), where \mathbf\in \mathbb_q^n and y \in \mathbb_q, so that with high probability y=f(\mathbf). Furthermore, the deviation from the equality is according to some known noise model. The problem calls for finding the function f, or some close approximation thereof, with high probability. The LWE problem was introduced by Oded Regev in 2005 (who won the 2018 Gödel Prize for this work), it is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computational Problem
In theoretical computer science, a computational problem is a problem that may be solved by an algorithm. For example, the problem of factoring :"Given a positive integer ''n'', find a nontrivial prime factor of ''n''." is a computational problem. A computational problem can be viewed as a set of ''instances'' or ''cases'' together with a, possibly empty, set of ''solutions'' for every instance/case. For example, in the factoring problem, the instances are the integers ''n'', and solutions are prime numbers ''p'' that are the nontrivial prime factors of ''n''. Computational problems are one of the main objects of study in theoretical computer science. The field of computational complexity theory attempts to determine the amount of resources ( computational complexity) solving a given problem will require and explain why some problems are intractable or undecidable. Computational problems belong to complexity classes that define broadly the resources (e.g. time, space/memory, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Normal Distribution
In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu is the mean or expectation of the distribution (and also its median and mode), while the parameter \sigma is its standard deviation. The variance of the distribution is \sigma^2. A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate. Normal distributions are important in statistics and are often used in the natural and social sciences to represent real-valued random variables whose distributions are not known. Their importance is partly due to the central limit theorem. It states that, under some conditions, the average of many samples (observations) of a random variable with finite mean and variance is itself a random variable—whose distribution converges to a normal dist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Machine Learning
Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of artificial intelligence. Machine learning algorithms build a model based on sample data, known as training data, in order to make predictions or decisions without being explicitly programmed to do so. Machine learning algorithms are used in a wide variety of applications, such as in medicine, email filtering, speech recognition, agriculture, and computer vision, where it is difficult or unfeasible to develop conventional algorithms to perform the needed tasks.Hu, J.; Niu, H.; Carrasco, J.; Lennox, B.; Arvin, F.,Voronoi-Based Multi-Robot Autonomous Exploration in Unknown Environments via Deep Reinforcement Learning IEEE Transactions on Vehicular Technology, 2020. A subset of machine learning is closely related to computational statistics, which focuses on making pred ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Short Integer Solution Problem
Short integer solution (SIS) and ring-SIS problems are two ''average''-case problems that are used in lattice-based cryptography constructions. Lattice-based cryptography began in 1996 from a seminal work by Miklós AjtaiAjtai, Miklós. enerating hard instances of lattice problems.Proceedings of the twenty-eighth annual ACM symposium on Theory of computing. ACM, 1996. who presented a family of one-way functions based on SIS problem. He showed that it is secure in an average case if the shortest vector problem \mathrm_\gamma (where \gamma = n^c for some constant c>0) is hard in a worst-case scenario. Average case problems are the problems that are hard to be solved for some randomly selected instances. For cryptography applications, worst case complexity is not sufficient, and we need to guarantee cryptographic construction are hard based on average case complexity. Lattices A ''full rank lattice'' \mathfrak \subset \R^n is a set of integer linear combinations of n linearly ind ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ring Learning With Errors Key Exchange
In cryptography, a public key exchange algorithm is a cryptographic algorithm which allows two parties to create and share a secret key, which they can use to encrypt messages between themselves. The ring learning with errors key exchange (RLWE-KEX) is one of a new class of public key exchange algorithms that are designed to be secure against an adversary that possesses a quantum computer. This is important because some public key algorithms in use today will be easily broken by a quantum computer if such computers are implemented. RLWE-KEX is one of a set of post-quantum cryptographic algorithms which are based on the difficulty of solving certain mathematical problems involving lattices. Unlike older lattice based cryptographic algorithms, the RLWE-KEX is provably reducible to a known hard problem in lattices. Background Since the 1980s the security of cryptographic key exchanges and digital signatures over the Internet has been primarily based on a small number of publi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lattice-based Cryptography
Lattice-based cryptography is the generic term for constructions of cryptographic primitives that involve lattices, either in the construction itself or in the security proof. Lattice-based constructions are currently important candidates for post-quantum cryptography. Unlike more widely used and known public-key schemes such as the RSA, Diffie-Hellman or elliptic-curve cryptosystems—which could, theoretically, be defeated using Shor's algorithm on a quantum computer—some lattice-based constructions appear to be resistant to attack by both classical and quantum computers. Furthermore, many lattice-based constructions are considered to be secure under the assumption that certain well-studied computational lattice problems cannot be solved efficiently. History In 1996, Miklós Ajtai introduced the first lattice-based cryptographic construction whose security could be based on the hardness of well-studied lattice problems, and Cynthia Dwork showed that a certain average-c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Post-quantum Cryptography
In cryptography, post-quantum cryptography (sometimes referred to as quantum-proof, quantum-safe or quantum-resistant) refers to cryptographic algorithms (usually public-key algorithms) that are thought to be secure against a cryptanalytic attack by a quantum computer. The problem with currently popular algorithms is that their security relies on one of three hard mathematical problems: the integer factorization problem, the discrete logarithm problem or the elliptic-curve discrete logarithm problem. All of these problems could be easily solved on a sufficiently powerful quantum computer running Shor's algorithm. Even though current quantum computers lack processing power to break any real cryptographic algorithm, many cryptographers are designing new algorithms to prepare for a time when quantum computing becomes a threat. This work has gained greater attention from academics and industry through the PQCrypto conference series since 2006 and more recently by several workshops on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chosen-ciphertext Attack
A chosen-ciphertext attack (CCA) is an attack model for cryptanalysis where the cryptanalyst can gather information by obtaining the decryptions of chosen ciphertexts. From these pieces of information the adversary can attempt to recover the hidden secret key used for decryption. For formal definitions of security against chosen-ciphertext attacks, see for example: Michael Luby and Mihir Bellare et al. Introduction A number of otherwise secure schemes can be defeated under chosen-ciphertext attack. For example, the El Gamal cryptosystem is semantically secure under chosen-plaintext attack, but this semantic security can be trivially defeated under a chosen-ciphertext attack. Early versions of RSA padding used in the SSL protocol were vulnerable to a sophisticated adaptive chosen-ciphertext attack which revealed SSL session keys. Chosen-ciphertext attacks have implications for some self-synchronizing stream ciphers as well. Designers of tamper-resistant cryptographic smart ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Public-key Cryptosystem
Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic algorithms based on mathematical problems termed one-way functions. Security of public-key cryptography depends on keeping the private key secret; the public key can be openly distributed without compromising security. In a public-key encryption system, anyone with a public key can encrypt a message, yielding a ciphertext, but only those who know the corresponding private key can decrypt the ciphertext to obtain the original message. For example, a journalist can publish the public key of an encryption key pair on a web site so that sources can send secret messages to the news organization in ciphertext. Only the journalist who knows the corresponding private key can decrypt the ciphertexts to obtain the sources' messages—an eavesdropp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lattice Problems
In computer science, lattice problems are a class of optimization problems related to mathematical objects called lattices. The conjectured intractability of such problems is central to the construction of secure lattice-based cryptosystems: Lattice problems are an example of NP-hard problems which have been shown to be average-case hard, providing a test case for the security of cryptographic algorithms. In addition, some lattice problems which are worst-case hard can be used as a basis for extremely secure cryptographic schemes. The use of worst-case hardness in such schemes makes them among the very few schemes that are very likely secure even against quantum computers. For applications in such cryptosystems, lattices over vector space (often \mathbb^n) or free modules (often \mathbb^n) are generally considered. For all the problems below, assume that we are given (in addition to other more specific inputs) a basis for the vector space ''V'' and a norm ''N''. The norm us ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Random Self-reducibility
Random self-reducibility (RSR) is the rule that a good algorithm for the average case implies a good algorithm for the worst case. RSR is the ability to solve all instances of a problem by solving a large fraction of the instances. Definition If for a function ''f'' evaluating any instance ''x'' can be reduced in polynomial time to the evaluation of ''f'' on one or more random instances ''yi'', then it is self-reducible (this is also known as a ''non-adaptive uniform self-reduction''). In a random self-reduction, an arbitrary worst-case instance ''x'' in the domain of ''f'' is mapped to a random set of instances ''y''1, ..., ''yk''. This is done so that ''f''(''x'') can be computed in polynomial time, given the coin-toss sequence from the mapping, ''x'', and ''f''(''y''1), ..., ''f''(''yk''). Therefore, taking the average with respect to the induced distribution on ''yi'', the average-case complexity of ''f'' is the same (within polynomial factors) as the worst-case randomized ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chinese Remainder Theorem
In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer ''n'' by several integers, then one can determine uniquely the remainder of the division of ''n'' by the product of these integers, under the condition that the divisors are pairwise coprime (no two divisors share a common factor other than 1). For example, if we know that the remainder of ''n'' divided by 3 is 2, the remainder of ''n'' divided by 5 is 3, and the remainder of ''n'' divided by 7 is 2, then without knowing the value of ''n'', we can determine that the remainder of ''n'' divided by 105 (the product of 3, 5, and 7) is 23. Importantly, this tells us that if ''n'' is a natural number less than 105, then 23 is the only possible value of ''n''. The earliest known statement of the theorem is by the Chinese mathematician Sun-tzu in the '' Sun-tzu Suan-ching'' in the 3rd century CE. The Chinese remainder theorem is widely used for computing with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]