HOME





Lander, Parkin, And Selfridge Conjecture
The Lander, Parkin, and Selfridge conjecture concerns the integer solutions of equations which contain sums of like powers. The equations are generalisations of those considered in Fermat's Last Theorem. The conjecture is that if the sum of some ''k''-th powers equals the sum of some other ''k''-th powers, then the total number of terms in both sums combined must be at least ''k''. Background Diophantine equations, such as the integer version of the equation ''a''2 + ''b''2 = ''c''2 that appears in the Pythagorean theorem, have been studied for their integer solution properties for centuries. Fermat's Last Theorem states that for powers greater than 2, the equation ''a''''k'' + ''b''''k'' = ''c''''k'' has no solutions in non-zero integers ''a'', ''b'', ''c''. Extending the number of terms on either or both sides, and allowing for higher powers than 2, led to Leonhard Euler to propose in 1769 that for all integers ''n'' and ''k'' greater than 1, if the sum of ''n'' ''k''th powe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fermat's Last Theorem
In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers , , and satisfy the equation for any integer value of greater than 2. The cases and have been known since antiquity to have infinitely many solutions.Singh, pp. 18–20. The proposition was first stated as a theorem by Pierre de Fermat around 1637 in the margin of a copy of ''Arithmetica''. Fermat added that he had a proof that was too large to fit in the margin. Although other statements claimed by Fermat without proof were subsequently proven by others and credited as theorems of Fermat (for example, Fermat's theorem on sums of two squares), Fermat's Last Theorem resisted proof, leading to doubt that Fermat ever had a correct proof. Consequently the proposition became known as a conjecture rather than a theorem. After 358 years of effort by mathematicians, the first successful proof was released in 1994 by Andrew Wiles and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generalized Taxicab Number
In mathematics, the generalized taxicab number ''Taxicab''(''k'', ''j'', ''n'') is the smallest number — if it exists — that can be expressed as the sum of ''j'' ''k''th positive powers in ''n'' different ways. For ''k'' = 3 and ''j'' = 2, they coincide with taxicab numbers. :\mathrm(1, 2, 2) = 4 = 1 + 3 = 2 + 2. :\mathrm(2, 2, 2) = 50 = 1^2 + 7^2 = 5^2 + 5^2. :\mathrm(3, 2, 2) = 1729 = 1^3 + 12^3 = 9^3 + 10^3 — famously stated by Ramanujan. Euler showed that :\mathrm(4, 2, 2) = 635318657 = 59^4 + 158^4 = 133^4 + 134^4. However, ''Taxicab''(5, 2, ''n'') is not known for any ''n'' ≥ 2:No positive integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ... is known that can be written as the sum of two 5th powers in more than one way, and it is not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diophantine Equations
In mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, such that the only solutions of interest are the integer ones. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents. Diophantine problems have fewer equations than unknowns and involve finding integers that solve simultaneously all equations. As such systems of equations define algebraic curves, algebraic surfaces, or, more generally, algebraic sets, their study is a part of algebraic geometry that is called '' Diophantine geometry''. The word ''Diophantine'' refers to the Hellenistic mathematician of the 3rd century, Diophantus of Alexandria, who made a study of such equations and was one of the first mathematicians to introduce symbolism into algebra. The mathematical study of Diophantine pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationall ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sums Of Powers
In mathematics and statistics, sums of powers occur in a number of contexts: *Sum of squares (other), Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities. *Faulhaber's formula expresses 1^k + 2^k + 3^k + \cdots + n^k as a polynomial in ''n'', or alternatively Bernoulli_polynomials#Sums_of_pth_powers, in term of a Bernoulli polynomial. *Fermat's right triangle theorem states that there is no solution in positive integers for a^2=b^4+c^4 and a^4=b^4+c^2. *Fermat's Last Theorem states that x^k+y^k=z^k is impossible in positive integers with ''k''>2. *The equation of a superellipse is , x/a, ^k+, y/b, ^k=1. The squircle is the case k=4, a=b. *Euler's sum of powers conjecture (disproved) concerns situations in which the sum of ''n' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pythagorean Quadruple
A Pythagorean quadruple is a tuple of integers , , , and , such that . They are solutions of a Diophantine equation and often only positive integer values are considered.R. Spira, ''The diophantine equation '', Amer. Math. Monthly Vol. 69 (1962), No. 5, 360–365. However, to provide a more complete geometric interpretation, the integer values can be allowed to be negative and zero (thus allowing Pythagorean triples to be included) with the only condition being that . In this setting, a Pythagorean quadruple defines a cuboid with integer side lengths , , and , whose space diagonal has integer length ; with this interpretation, Pythagorean quadruples are thus also called ''Pythagorean boxes''. In this article we will assume, unless otherwise stated, that the values of a Pythagorean quadruple are all positive integers. Parametrization of primitive quadruples A Pythagorean quadruple is called primitive if the greatest common divisor of its entries is 1. Every Pythagorean quadru ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Prouhet–Tarry–Escott Problem
In mathematics, the Prouhet–Tarry–Escott problem asks for two disjoint multisets ''A'' and ''B'' of ''n'' integers each, whose first ''k'' power sum symmetric polynomials are all equal. That is, the two multisets should satisfy the equations :\sum_ a^i = \sum_ b^i for each integer ''i'' from 1 to a given ''k''. It has been shown that ''n'' must be strictly greater than ''k''. Solutions with k = n - 1 are called ''ideal solutions''. Ideal solutions are known for 3 \le n \le 10 and for n = 12. No ideal solution is known for n=11 or for n \ge 13. This problem was named after Eugène Prouhet, who studied it in the early 1850s, and Gaston Tarry and Edward B. Escott, who studied it in the early 1910s. The problem originates from letters of Christian Goldbach and Leonhard Euler (1750/1751). Examples Ideal solutions An ideal solution for ''n'' = 6 is given by the two sets and , because: : 01 + 51 + 61 + 161 + 171 + 221 = 11 + 21 + 101 + 121 + 201 + 211 : 02 + 5 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Minimum Sudoku Problem
Experimental mathematics is an approach to mathematics in which computation is used to investigate mathematical objects and identify properties and patterns. It has been defined as "that branch of mathematics that concerns itself ultimately with the codification and transmission of insights within the mathematical community through the use of experimental (in either the Galilean, Baconian, Aristotelian or Kantian sense) exploration of conjectures and more informal beliefs and a careful analysis of the data acquired in this pursuit." As expressed by Paul Halmos: "Mathematics is not a deductive science—that's a cliché. When you try to prove a theorem, you don't just list the hypotheses, and then start to reason. What you do is trial and error, experimentation, guesswork. You want to find out what the facts are, and what you do is in that respect similar to what a laboratory technician does." History Mathematicians have always practiced experimental mathematics. Existing records ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Of Unsolved Problems In Mathematics
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations. Some problems belong to more than one discipline and are studied using techniques from different areas. Prizes are often awarded for the solution to a long-standing problem, and some lists of unsolved problems, such as the Millennium Prize Problems, receive considerable attention. This list is a composite of notable unsolved problems mentioned in previously published lists, including but not limited to lists considered authoritative. Although this list may never be comprehensive, the problems listed here vary widely in both difficulty and importance. Lists of unsolved problems in mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jacobi–Madden Equation
The Jacobi–Madden equation is the Diophantine equation : a^4 + b^4 + c^4 + d^4 = (a + b + c + d)^4 , proposed by the physicist Lee W. Jacobi and the mathematician Daniel J. Madden in 2008. The variables ''a'', ''b'', ''c'', and ''d'' can be any integers, positive, negative or 0. Jacobi and Madden showed that there are an infinitude of solutions of this equation with all variables non-zero. History The Jacobi–Madden equation represents a particular case of the equation : a^4 + b^4 +c^4 +d^4 = e^4 , first proposed in 1772 by Leonhard Euler who conjectured that four is the minimum number (greater than one) of fourth powers of non-zero integers that can sum up to another fourth power. This conjecture, now known as Euler's sum of powers conjecture, was a natural generalization of the Fermat's Last Theorem, the latter having been proved for the fourth power by Pierre de Fermat himself. Noam Elkies was first to find an infinite series of solutions to Euler's equation with exa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fermat–Catalan Conjecture
In number theory, the Fermat–Catalan conjecture is a generalization of Fermat's Last Theorem and of Catalan's conjecture, hence the name. The conjecture states that the equation has only finitely many solutions (''a'',''b'',''c'',''m'',''n'',''k'') with distinct triplets of values (''a''''m'', ''b''''n'', ''c''''k'') where ''a'', ''b'', ''c'' are positive coprime integers and ''m'', ''n'', ''k'' are positive integers satisfying The inequality on ''m'', ''n'', and ''k'' is a necessary part of the conjecture. Without the inequality there would be infinitely many solutions, for instance with ''k'' = 1 (for any ''a'', ''b'', ''m'', and ''n'' and with ''c'' = ''a''''m'' + ''b''''n'') or with ''m'', ''n'', and ''k'' all equal to two (for the infinitely many known Pythagorean triples). Known solutions As of 2015, the following ten solutions to equation (1) which meet the criteria of equation (2) are known:. :1^m+2^3=3^2\; (for m>6 to satisfy Eq. 2) :2^5+7^2=3^4\; :7^3+13^2=2^9\; :2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Beal's Conjecture
The Beal conjecture is the following conjecture in number theory: :If :: A^x +B^y = C^z, :where ''A'', ''B'', ''C'', ''x'', ''y'', and ''z'' are positive integers with ''x'', ''y'', ''z'' ≥ 3, then ''A'', ''B'', and ''C'' have a common prime factor. Equivalently, :The equation A^x + B^y = C^z has no solutions in positive integers and pairwise coprime integers ''A, B, C'' if ''x, y, z'' ≥ 3. The conjecture was formulated in 1993 by Andrew Beal, a banker and amateur mathematician, while investigating generalizations of Fermat's Last Theorem. Since 1997, Beal has offered a monetary prize for a peer-reviewed proof of this conjecture or a counterexample. The value of the prize has increased several times and is currently $1 million. In some publications, this conjecture has occasionally been referred to as a generalized Fermat equation, the Mauldin conjecture, and the Tijdeman-Zagier conjecture. Related examples To illustrate, the solution 3^3 + 6^3 = 3^5 has bases with a c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]