Lamb–Chaplygin Dipole
   HOME



picture info

Lamb–Chaplygin Dipole
The Lamb–Chaplygin dipole model is a mathematical description for a particular inviscid and steady dipolar vortex flow. It is a non-trivial solution to the two-dimensional Euler equations. The model is named after Horace Lamb and Sergey Alexeyevich Chaplygin, who independently discovered this flow structure. This dipole is the two-dimensional analogue of Hill's spherical vortex. __TOC__ The model A two-dimensional (2D), solenoidal vector field \mathbf may be described by a scalar stream function \psi, via \mathbf = -\mathbf \times \mathbf \psi, where \mathbf is the right-handed unit vector perpendicular to the 2D plane. By definition, the stream function is related to the vorticity \omega via a Poisson equation: -\nabla^2\psi = \omega. The Lamb–Chaplygin model follows from demanding the following characteristics: * The dipole has a circular atmosphere/separatrix with radius R: \psi\left(r = R\right) = 0. * The dipole propages through an otherwise irrotational fluid (\ome ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euler Equations (fluid Dynamics)
In fluid dynamics, the Euler equations are a set of partial differential equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal conductivity. The Euler equations can be applied to incompressible and compressible flows. The incompressible Euler equations consist of Cauchy equations for conservation of mass and balance of momentum, together with the incompressibility condition that the flow velocity is divergence-free. The compressible Euler equations consist of equations for conservation of mass, balance of momentum, and balance of energy, together with a suitable constitutive equation for the specific energy density of the fluid. Historically, only the equations of conservation of mass and balance of momentum were derived by Euler. However, fluid dynamics literature often refers to the full set of the compressible Euler equations – including ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Horace Lamb
Sir Horace Lamb (27 November 1849 – 4 December 1934R. B. Potts,, '' Australian Dictionary of Biography'', Volume 5, MUP, 1974, pp 54–55. Retrieved 5 Sep 2009) was a British applied mathematician and author of several influential texts on classical physics, among them ''Hydrodynamics'' (1895) and ''Dynamical Theory of Sound'' (1910). Both of these books remain in print. The word vorticity was invented by Lamb in 1916. Biography Early life and education Lamb was born in Stockport, Cheshire, the son of John Lamb and his wife Elizabeth, ''née'' Rangeley. John Lamb was a foreman in a cotton mill who had gained some distinction by the invention of an improvement to spinning machines, he died when his son was a child. Lamb's mother married again, and soon afterwards Horace went to live with his strict maternal aunt, Mrs. Holland. He studied at Stockport Grammar School, where he made the acquaintance of a wise and kindly headmaster in the Rev. Charles Hamilton, and a graduate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sergey Alexeyevich Chaplygin
Sergey Alexeyevich Chaplygin (; 5 April 1869 – 8 October 1942) was a Russian and Soviet physicist, mathematician, and mechanical engineer. He is known for mathematical formulas such as Chaplygin's equation and for a hypothetical substance in cosmology called Chaplygin gas, named after him. He graduated in 1890 from Moscow University, and later became a professor. He taught mechanical engineering at Moscow Higher Courses for Women in 1901, and of applied mathematics at Moscow School of Technology, 1903. He was appointed Director of the courses in 1905. Leonid I. Sedov was one of his students. Chaplygin's theories were greatly inspired by N. Ye. Zhukovsky, who founded the Central Institute of Aerodynamics. His early research focused on hydromechanics. His "Collected Works", consisting of 4 volumes, were published in 1948. Biography Early life Chaplygin was born to Aleksei Timofeevich Chaplygin, a shop assistant, and Anna Petrovna in Ranenburg (present day Cha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hill's Spherical Vortex
Hill's spherical vortex is an exact solution of the Euler equations that is commonly used to model a vortex ring. The solution is also used to model the velocity distribution inside a spherical drop of one fluid moving at a constant velocity through another fluid at small Reynolds number. The vortex is named after Micaiah John Muller Hill who discovered the exact solution in 1894. The two-dimensional analogue of this vortex is the Lamb–Chaplygin dipole. The solution is described in the spherical polar coordinates system (r,\theta,\phi) with corresponding velocity components (v_r,v_\theta,0). The velocity components are identified from Stokes stream function \psi(r,\theta) as follows :v_r = \frac\frac, \quad v_\theta = - \frac\frac. The Hill's spherical vortex is described by : \psi=\begin-\frac \left(1-\frac\right) r^2\sin^2\theta \quad \text \quad r\leq a\\ \frac \left(1 - \frac\right)r^2\sin^2\theta \quad \text \quad r\geq a \end where U is a constant freestream velocity far ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Solenoidal Vector Field
In vector calculus a solenoidal vector field (also known as an incompressible vector field, a divergence-free vector field, or a transverse vector field) is a vector field v with divergence zero at all points in the field: \nabla \cdot \mathbf = 0. A common way of expressing this property is to say that the field has no sources or sinks.This statement does not mean that the field lines of a solenoidal field must be closed, neither that they cannot begin or end. For a detailed discussion of the subject, see J. Slepian: "Lines of Force in Electric and Magnetic Fields", American Journal of Physics, vol. 19, pp. 87-90, 1951, and L. Zilberti: "The Misconception of Closed Magnetic Flux Lines", IEEE Magnetics Letters, vol. 8, art. 1306005, 2017. Properties The divergence theorem gives an equivalent integral definition of a solenoidal field; namely that for any closed surface, the net total flux through the surface must be zero: where d\mathbf is the outward normal to each surface el ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stream Function
In fluid dynamics, two types of stream function (or streamfunction) are defined: * The two-dimensional (or Lagrange) stream function, introduced by Joseph Louis Lagrange in 1781, is defined for incompressible flow, incompressible (divergence-free), two-dimensional fluid flow, flows. * The Stokes stream function, named after George Gabriel Stokes, is defined for incompressible, three-dimensional flows with axisymmetry. The properties of stream functions make them useful for analyzing and graphically illustrating flows. The remainder of this article describes the two-dimensional stream function. Two-dimensional stream function Assumptions The two-dimensional stream function is based on the following assumptions: * The flow field can be described as two-dimensional plane flow, with velocity vector : \quad \mathbf = \begin u (x,y,t) \\ v (x,y,t) \\ 0 \end. * The velocity satisfies the continuity equation for incompressible flow: : \quad \nabla \cdot \mathbf = 0. * The domain h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Vorticity
In continuum mechanics, vorticity is a pseudovector (or axial vector) field that describes the local spinning motion of a continuum near some point (the tendency of something to rotate), as would be seen by an observer located at that point and traveling along with the flow. It is an important quantity in the dynamical theory of fluids and provides a convenient framework for understanding a variety of complex flow phenomena, such as the formation and motion of vortex rings. Mathematically, the vorticity \boldsymbol is the curl of the flow velocity \mathbf v: :\boldsymbol \equiv \nabla \times \mathbf v\,, where \nabla is the nabla operator. Conceptually, \boldsymbol could be determined by marking parts of a continuum in a small neighborhood of the point in question, and watching their ''relative'' displacements as they move along the flow. The vorticity \boldsymbol would be twice the mean angular velocity vector of those particles relative to their center of mass, orie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Poisson Equation
Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics. For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate the corresponding electrostatic or gravitational (force) field. It is a generalization of Laplace's equation, which is also frequently seen in physics. The equation is named after French mathematician and physicist Siméon Denis Poisson who published it in 1823. Statement of the equation Poisson's equation is \Delta\varphi = f, where \Delta is the Laplace operator, and f and \varphi are real number, real or complex number, complex-valued function (mathematics), functions on a manifold. Usually, f is given, and \varphi is sought. When the manifold is Euclidean space, the Laplace operator is often denoted as , and so Poisson's equation is frequently written as \nabla^2 \varphi = f. In three- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cylindrical Coordinates
A cylinder () has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base. A cylinder may also be defined as an infinite curvilinear surface in various modern branches of geometry and topology. The shift in the basic meaning—solid versus surface (as in a solid ball versus sphere surface)—has created some ambiguity with terminology. The two concepts may be distinguished by referring to solid cylinders and cylindrical surfaces. In the literature the unadorned term "cylinder" could refer to either of these or to an even more specialized object, the '' right circular cylinder''. Types The definitions and results in this section are taken from the 1913 text ''Plane and Solid Geometry'' by George A. Wentworth and David Eugene Smith . A ' is a surface consisting of all the points on all the lines which are parallel to a given line and which pass through a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bessel Functions
Bessel functions, named after Friedrich Bessel who was the first to systematically study them in 1824, are canonical solutions of Bessel's differential equation x^2 \frac + x \frac + \left(x^2 - \alpha^2 \right)y = 0 for an arbitrary complex number \alpha, which represents the ''order'' of the Bessel function. Although \alpha and -\alpha produce the same differential equation, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of \alpha. The most important cases are when \alpha is an integer or half-integer. Bessel functions for integer \alpha are also known as cylinder functions or the cylindrical harmonics because they appear in the solution to Laplace's equation in cylindrical coordinates. #Spherical Bessel functions, Spherical Bessel functions with half-integer \alpha are obtained when solving the Helmholtz equation in spherical coordinates. Applications Bessel's equation arise ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]