Joint Entropy
   HOME
*





Joint Entropy
In information theory, joint entropy is a measure of the uncertainty associated with a set of variables. Definition The joint Shannon entropy (in bits) of two discrete random variables X and Y with images \mathcal X and \mathcal Y is defined as where x and y are particular values of X and Y, respectively, P(x,y) is the joint probability of these values occurring together, and P(x,y) \log_2 (x,y)/math> is defined to be 0 if P(x,y)=0. For more than two random variables X_1, ..., X_n this expands to where x_1,...,x_n are particular values of X_1,...,X_n, respectively, P(x_1, ..., x_n) is the probability of these values occurring together, and P(x_1, ..., x_n) \log_2 (x_1, ..., x_n)/math> is defined to be 0 if P(x_1, ..., x_n)=0. Properties Nonnegativity The joint entropy of a set of random variables is a nonnegative number. :\Eta(X,Y) \geq 0 :\Eta(X_1,\ldots, X_n) \geq 0 Greater than individual entropies The joint entropy of a set of variables is greater than or eq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE