HOME





Jurkat–Richert Theorem
The Jurkat–Richert theorem is a mathematical theorem in sieve theory. It is a key ingredient in proofs of Chen's theorem on Goldbach's conjecture. It was proved in 1965 by Wolfgang B. Jurkat and Hans-Egon Richert. Statement of the theorem This formulation is from Diamond & Halberstam. Other formulations are in Jurkat & Richert, Halberstam & Richert, and Nathanson. Suppose ''A'' is a finite sequence of integers and ''P'' is a set of primes. Write ''A''''d'' for the number of items in ''A'' that are divisible by ''d'', and write ''P''(''z'') for the product of the elements in ''P'' that are less than ''z''. Write ω(''d'') for a multiplicative function In number theory, a multiplicative function is an arithmetic function f of a positive integer n with the property that f(1)=1 and f(ab) = f(a)f(b) whenever a and b are coprime. An arithmetic function is said to be completely multiplicative (o ... such that ω(''p'')/''p'' is approximately the proportion of elements o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Theorem
In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In mainstream mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice (ZFC), or of a less powerful theory, such as Peano arithmetic. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and ''corollary'' for less important theorems. In mathematical logic, the concepts of theorems and proofs have been formalized in order to allow mathematical reason ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sieve Theory
Sieve theory is a set of general techniques in number theory, designed to count, or more realistically to estimate the size of, sifted sets of integers. The prototypical example of a sifted set is the set of prime numbers up to some prescribed limit ''X''. Correspondingly, the prototypical example of a sieve is the sieve of Eratosthenes, or the more general Legendre sieve. The direct attack on prime numbers using these methods soon reaches apparently insuperable obstacles, in the way of the accumulation of error terms. In one of the major strands of number theory in the twentieth century, ways were found of avoiding some of the difficulties of a frontal attack with a naive idea of what sieving should be. One successful approach is to approximate a specific sifted set of numbers (e.g. the set of prime numbers) by another, simpler set (e.g. the set of almost prime numbers), which is typically somewhat larger than the original set, and easier to analyze. More sophisticated sieves a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chen's Theorem
In number theory, Chen's theorem states that every sufficiently large parity (mathematics), even number can be written as the sum of either two prime number, primes, or a prime and a semiprime (the product of two primes). It is a weakened form of Goldbach's conjecture, which states that every even number is the sum of two primes. History The theorem was first stated by China, Chinese mathematician Chen Jingrun in 1966, with further details of the mathematical proof, proof in 1973. His original proof was much simplified by P. M. Ross in 1975. Chen's theorem is a significant step towards Goldbach's conjecture, and a celebrated application of sieve theory, sieve methods. Chen's theorem represents the strengthening of a previous result due to Alfréd Rényi, who in 1947 had shown there exists a finite ''K'' such that any even number can be written as the sum of a prime number and the product of at most ''K'' primes. Variations Chen's 1973 paper stated two results with nearly i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Goldbach's Conjecture
Goldbach's conjecture is one of the oldest and best-known list of unsolved problems in mathematics, unsolved problems in number theory and all of mathematics. It states that every even and odd numbers, even natural number greater than 2 is the sum of two prime numbers. The conjecture has been shown to hold for all integers less than but remains unproven despite considerable effort. History Origins On 7 June 1742, the Prussian mathematician Christian Goldbach wrote a letter to Leonhard Euler (letter XLIII), in which he proposed the following conjecture: Goldbach was following the now-abandoned convention of Prime number#Primality of one, considering 1 to be a prime number, so that a sum of units would be a sum of primes. He then proposed a second conjecture in the margin of his letter, which implies the first: Euler replied in a letter dated 30 June 1742 and reminded Goldbach of an earlier conversation they had had (""), in which Goldbach had remarked that the first of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graduate Texts In Mathematics
Graduate Texts in Mathematics (GTM) () is a series of graduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standard size (with variable numbers of pages). The GTM series is easily identified by a white band at the top of the book. The books in this series tend to be written at a more advanced level than the similar Undergraduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level. List of books #''Introduction to Axiomatic Set Theory'', Gaisi Takeuti, Wilson M. Zaring (1982, 2nd ed., ) #''Measure and Category – A Survey of the Analogies between Topological and Measure Spaces'', John C. Oxtoby (1980, 2nd ed., ) #''Topological Vector Spaces'', H. H. Schaefer, M. P. Wolff (1999, 2nd ed., ) #''A Course in Homological Algebra'', Peter Hilton, Urs Stammbach (1997, 2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second-largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hans-Egon Richert
Hans-Egon Richert (June 2, 1924 – November 25, 1993) was a German mathematician who worked primarily in analytic number theory. He is the author (with Heini Halberstam) of a definitive book on sieve theory. Life and education Hans-Egon Richert was born in 1924 in Hamburg, Germany. He attended the University of Hamburg and received his Ph.D. under Max Deuring in 1950. He held a temporary chair at the University of Göttingen and then a newly created chair at the University of Marburg. In 1972 he moved to the University of Ulm, where he remained until his retirement in 1991. He died on November 25, 1993, in Blaustein, near Ulm, Germany. Work Richert worked primarily in analytic number theory, and beginning around 1965 started a collaboration with Heini Halberstam and shifted his focus to sieve theory. For many years he was a chairman of the Analytic Number Theory meetings at the Mathematical Research Institute of Oberwolfach. Analytic number theory Richert made contri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Acta Arithmetica
''Acta Arithmetica'' is a scientific journal of mathematics publishing papers on number theory. It was established in 1935 by Salomon Lubelski and Arnold Walfisz. The journal is published by the Institute of Mathematics of the Polish Academy of Sciences. References External links Online archives
(Library of Science, Issues: 1935–2000) 1935 establishments in Poland Number theory journals Academic journals established in 1935 Polish Academy of Sciences academic journals Biweekly journals Academic journals associated with learned and professional societies {{math-journal-stub English-language journals ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Heini Halberstam
Heini Halberstam (11 September 1926 – 25 January 2014) was a Czech-born British mathematician, working in the field of analytic number theory. He is remembered in part for the Elliott–Halberstam conjecture from 1968. Life and career Halberstam was born in Most, Czechoslovakia and died in Champaign, Illinois, US. His father died when he was very young. After Adolf Hitler's annexation of the Sudetenland, he and his mother moved to Prague. At the age of twelve, as the Nazi occupation progressed, he was one of the 669 children saved by Sir Nicholas Winton, who organized the Kindertransport, a train that allowed those children to leave Nazi-occupied territory. He was sent to England, where he lived during World War II. He obtained his PhD in 1952, from University College, London, under the supervision of Theodor Estermann. From 1962 until 1964, Halberstam was Erasmus Smith's Professor of Mathematics at Trinity College Dublin; From 1964 until 1980, Halberstam was a Professor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press was the university press of the University of Cambridge. Granted a letters patent by King Henry VIII in 1534, it was the oldest university press in the world. Cambridge University Press merged with Cambridge Assessment to form Cambridge University Press and Assessment under Queen Elizabeth II's approval in August 2021. With a global sales presence, publishing hubs, and offices in more than 40 countries, it published over 50,000 titles by authors from over 100 countries. Its publications include more than 420 academic journals, monographs, reference works, school and university textbooks, and English language teaching and learning publications. It also published Bibles, runs a bookshop in Cambridge, sells through Amazon, and has a conference venues business in Cambridge at the Pitt Building and the Sir Geoffrey Cass Sports and Social Centre. It also served as the King's Printer. Cambridge University Press, as part of the University of Cambridge, was a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge
Cambridge ( ) is a List of cities in the United Kingdom, city and non-metropolitan district in the county of Cambridgeshire, England. It is the county town of Cambridgeshire and is located on the River Cam, north of London. As of the 2021 United Kingdom census, the population of the City of Cambridge was 145,700; the population of the wider built-up area (which extends outside the city council area) was 181,137. (2021 census) There is archaeological evidence of settlement in the area as early as the Bronze Age, and Cambridge became an important trading centre during the Roman Britain, Roman and Viking eras. The first Town charter#Municipal charters, town charters were granted in the 12th century, although modern city status was not officially conferred until 1951. The city is well known as the home of the University of Cambridge, which was founded in 1209 and consistently ranks among the best universities in the world. The buildings of the university include King's College Chap ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Melvyn B
Melvyn is a masculine given name that may refer to: * Melvyn Betts (born 1975), English cricketer * Melvyn Bragg (born 1939), British broadcaster and author * Melvyn Caplan, British Conservative politician * Mel Collins (born 1947), British saxophonist, former member of King Crimson * Melvyn Douglas (1901-1981), American actor * Melvyn Dubofsky (born 1934), American professor of history and sociology * Melvyn Gale (born 1952), English cellist, former member of the Electric Light Orchestra * Melvyn Goldstein (born 1938), American social anthropologist * Melvyn Grant (born 1944), English artist and illustrator * Melvyn Greaves (born 1941), British cancer biologist and professor * Mel Gussow (1933-2005), American theater critic, movie critic, and author * Melvyn Hayes (born 1935), English actor * Melvyn Jaminet, (born 1999), French rugby footballer * Melvyn Jones (born 1964), British retired slalom canoer * Melvyn P. Leffler (born 1945), American historian and professor * Me ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]