HOME





Jordan–Wigner Transformation
The Jordan–Wigner transformation is a transformation that maps spin operators onto fermionic creation and annihilation operators. It was proposed by Pascual Jordan and Eugene Wigner for one-dimensional lattice models, but now two-dimensional analogues of the transformation have also been created. The Jordan–Wigner transformation is often used to exactly solve 1D spin-chains such as the Ising and XY models by transforming the spin operators to fermionic operators and then diagonalizing in the fermionic basis. This transformation actually shows that the distinction between spin-1/2 particles and fermions is nonexistent. It can be applied to systems with an arbitrary dimension. Analogy between spins and fermions In what follows we will show how to map a 1D spin chain of spin-1/2 particles to fermions. Take spin-1/2 Pauli operators acting on a site j of a 1D chain, \sigma_^, \sigma_^, \sigma_^. Taking the anticommutator of \sigma_^ and \sigma_^, we find \ = I, as would be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spin Operator
Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. Spin is quantized, and accurate models for the interaction with spin require relativistic quantum mechanics or quantum field theory. The existence of electron spin angular momentum is inferred from experiments, such as the Stern–Gerlach experiment, in which silver atoms were observed to possess two possible discrete angular momenta despite having no orbital angular momentum. The relativistic spin–statistics theorem connects electron spin quantization to the Pauli exclusion principle: observations of exclusion imply half-integer spin, and observations of half-integer spin imply exclusion. Spin is described mathematically as a vector for some particles such as photons, and as a spinor or bispinor for other particles such as electrons. Spinors and bispinors behave similarly to vectors: they have definite magnitudes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Disorder Operator
In quantum field theory, an order operator or an order field is a quantum field version of Landau's order parameter whose expectation value characterizes phase transitions. There exists a dual version of it, the disorder operator or disorder field, whose expectation value characterizes a phase transition by indicating the prolific presence of defect or vortex lines in an ordered phase. The disorder operator is an operator that creates a discontinuity of the ordinary order operators or a monodromy for their values. For example, a 't Hooft operator is a disorder operator. So is the Jordan–Wigner transformation. The concept of a disorder observable was first introduced in the context of 2D Ising spin lattices, where a phase transition between spin-aligned (magnetized) and disordered phases happens at some temperature.Fradkin, E. J Stat Phys (2017) 167: 427. https://doi.org/10.1007/s10955-017-1737-7 See also * Operator (physics) Books * Kleinert, Hagen, '' Gauge Fields in Cond ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistical Mechanics
In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in a wide variety of fields such as biology, neuroscience, computer science Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, ..., information theory and sociology. Its main purpose is to clarify the properties of matter in aggregate, in terms of physical laws governing atomic motion. Statistical mechanics arose out of the development of classical thermodynamics, a field for which it was successful in explaining macroscopic physical properties—such as temperature, pressure, and heat capacity—in terms of microscop ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Condensed Matter Physics
Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid State of matter, phases, that arise from electromagnetic forces between atoms and electrons. More generally, the subject deals with condensed phases of matter: systems of many constituents with strong interactions among them. More exotic condensed phases include the superconductivity, superconducting phase exhibited by certain materials at extremely low cryogenic temperatures, the ferromagnetic and antiferromagnetic phases of Spin (physics), spins on crystal lattices of atoms, the Bose–Einstein condensates found in ultracold atomic systems, and liquid crystals. Condensed matter physicists seek to understand the behavior of these phases by experiments to measure various material properties, and by applying the physical laws of quantum mechanics, electromagnetism, statistical mechanics, and other theoretical physics, physic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jordan–Schwinger Transformation
In theoretical physics, the Jordan map, often also called the Jordan–Schwinger map is a map from matrices to bilinear expressions of quantum oscillators which expedites computation of representations of Lie algebras occurring in physics. It was introduced by Pascual Jordan in 1935 and was utilized by Julian Schwinger in 1952 to re-work out the theory of quantum angular momentum efficiently, given that map’s ease of organizing the (symmetric) representations of su(2) in Fock space. The map utilizes several creation and annihilation operators a^\dagger_i and a^_i of routine use in quantum field theories and many-body problems, each pair representing a quantum harmonic oscillator. The commutation relations of creation and annihilation operators in a multiple-boson system are, : ^_i, a^\dagger_j\equiv a^_i a^\dagger_j - a^\dagger_ja^_i = \delta_, : ^\dagger_i, a^\dagger_j= ^_i, a^_j= 0, where \ , \ \ /math> is the commutator and \delta_ is the Kronecker delta. These opera ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Holstein–Primakoff Transformation
In quantum mechanics, the Holstein–Primakoff transformation is a mapping from boson creation and annihilation operators to the spin operators, effectively truncating their infinite-dimensional Fock space to finite-dimensional subspaces. One important aspect of quantum mechanics is the occurrence of—in general— non-commuting operators which represent observables, quantities that can be measured. A standard example of a set of such operators are the three components of the angular momentum operators, which are crucial in many quantum systems. These operators are complicated, and one would like to find a simpler representation, which can be used to generate approximate calculational schemes. The transformation was developed in 1940 by Theodore Holstein, a graduate student at the time, and Henry Primakoff. This method has found widespread applicability and has been extended in many different directions. There is a close link to other methods of boson mapping of operator alge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bogoliubov Transformation
In theoretical physics, the Bogoliubov transformation, also known as the Bogoliubov–Valatin transformation, was independently developed in 1958 by Nikolay Bogolyubov and John George Valatin for finding solutions of BCS theory in a homogeneous system. The Bogoliubov transformation is an isomorphism of either the canonical commutation relation algebra or canonical anticommutation relation algebra. This induces an autoequivalence on the respective representations. The Bogoliubov transformation is often used to diagonalize Hamiltonians, which yields the stationary solutions of the corresponding Schrödinger equation. The Bogoliubov transformation is also important for understanding the Unruh effect, Hawking radiation, Davies-Fulling radiation (moving mirror model), pairing effects in nuclear physics, and many other topics. The Bogoliubov transformation is often used to diagonalize Hamiltonians, ''with'' a corresponding transformation of the state function. Operator eigenvalues cal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Computing
A quantum computer is a computer that exploits quantum mechanical phenomena. On small scales, physical matter exhibits properties of wave-particle duality, both particles and waves, and quantum computing takes advantage of this behavior using specialized hardware. Classical physics cannot explain the operation of these quantum devices, and a scalable quantum computer could perform some calculations Exponential growth, exponentially faster than any modern "classical" computer. Theoretically a large-scale quantum computer could post-quantum cryptography, break some widely used encryption schemes and aid physicists in performing quantum simulator, physical simulations; however, the current state of the art is largely experimental and impractical, with several obstacles to useful applications. The basic unit of information in quantum computing, the qubit (or "quantum bit"), serves the same function as the bit in classical computing. However, unlike a classical bit, which can be in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Qubit
In quantum computing, a qubit () or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, one of the simplest quantum systems displaying the peculiarity of quantum mechanics. Examples include the spin of the electron in which the two levels can be taken as spin up and spin down; or the polarization of a single photon in which the two spin states (left-handed and the right-handed circular polarization) can also be measured as horizontal and vertical linear polarization. In a classical system, a bit would have to be in one state or the other. However, quantum mechanics allows the qubit to be in a coherent superposition of multiple states simultaneously, a property that is fundamental to quantum mechanics and quantum computing. Etymology The coining of the term ''qubit'' is attributed to Benjamin Schumacher. In the acknow ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

S-duality
In theoretical physics, S-duality (short for strong–weak duality, or Sen duality) is an equivalence of two physical theories, which may be either quantum field theories or string theories. S-duality is useful for doing calculations in theoretical physics because it relates a theory in which calculations are difficult to a theory in which they are easier. In quantum field theory, S-duality generalizes a well established fact from classical electrodynamics, namely the invariance of Maxwell's equations under the interchange of electric and magnetic fields. One of the earliest known examples of S-duality in quantum field theory is Montonen–Olive duality which relates two versions of a quantum field theory called ''N'' = 4 supersymmetric Yang–Mills theory. Recent work of Anton Kapustin and Edward Witten suggests that Montonen–Olive duality is closely related to a research program in mathematics called the geometric Langlands program. Another realization of S-duality i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Order Operator
In quantum field theory, an order operator or an order field is a quantum field version of Landau's order parameter whose expectation value characterizes phase transitions. There exists a dual version of it, the disorder operator or disorder field, whose expectation value characterizes a phase transition by indicating the prolific presence of defect or vortex lines in an ordered phase. The disorder operator is an operator that creates a discontinuity of the ordinary order operators or a monodromy for their values. For example, a 't Hooft operator is a disorder operator. So is the Jordan–Wigner transformation. The concept of a disorder observable was first introduced in the context of 2D Ising spin lattices, where a phase transition between spin-aligned ( magnetized) and disordered phases happens at some temperature.Fradkin, E. J Stat Phys (2017) 167: 427. https://doi.org/10.1007/s10955-017-1737-7 See also * Operator (physics) An operator is a function over a space of ph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


't Hooft Loop
In quantum field theory, the 't Hooft loop is a magnetic analogue of the Wilson loop whose spatial loop operator give rise to thin loops of magnetic flux associated with magnetic vortices. They play the role of a disorder parameter for the Higgs phase in pure gauge theory. Consistency conditions between electric and magnetic charges limit the possible 't Hooft loops that can be used, similarly to the way that the Dirac quantization condition limits the set of allowed magnetic monopoles. They were first introduced by Gerard 't Hooft in 1978 in the context of possible phases that gauge theories admit. Definition There are a number of ways to define 't Hooft lines and loops. For timelike curves C they are equivalent to the gauge configuration arising from the worldline traced out by a magnetic monopole. These are singular gauge field configurations on the line such that their spatial slice have a magnetic field whose form approaches that of a magnetic monopole : B^i \xright ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]