HOME





Japaridze's Polymodal Logic
Japaridze's polymodal logic (GLP) is a system of provability logic with infinitely many provability modalities. This system has played an important role in some applications of provability algebras in proof theory, and has been extensively studied since the late 1980s. It is named after Giorgi Japaridze. Language and axiomatization The language of GLP extends that of the language of classical propositional logic by including the infinite series of necessity operators. Their dual possibility operators are defined by . The axioms of GLP are all classical tautologies and all formulas of one of the following forms: * * * * And the rules of inference are: * From and conclude * From conclude Provability semantics Consider a sufficiently strong first-order theory such as Peano Arithmetic . Define the series of theories as follows: * is * is the extension of through the additional axioms for each formula such that proves all of the formulas For each , let be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Provability Logic
Provability logic is a modal logic, in which the box (or "necessity") operator is interpreted as 'it is provable that'. The point is to capture the notion of a proof predicate of a reasonably rich formal theory, such as Peano arithmetic. Examples There are a number of provability logics, some of which are covered in the literature mentioned in . The basic system is generally referred to as GL (for Gödel– Löb) or L or K4W (W stands for well-foundedness). It can be obtained by adding the modal version of Löb's theorem to the logic K (or K4). Namely, the axioms of GL are all tautologies of classical propositional logic plus all formulas of one of the following forms: * Distribution axiom: * Löb's axiom: And the rules of inference are: * ''Modus ponens'': From ''p'' → ''q'' and ''p'' conclude ''q''; * Necessitation: From \vdash ''p'' conclude \vdash . History The GL model was pioneered by Robert M. Solovay in 1976. Since then, until his death in 1996, the prime inspi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Second-order Arithmetic
In mathematical logic, second-order arithmetic is a collection of axiomatic systems that formalize the natural numbers and their subsets. It is an alternative to axiomatic set theory as a foundation of mathematics, foundation for much, but not all, of mathematics. A precursor to second-order arithmetic that involves third-order parameters was introduced by David Hilbert and Paul Bernays in their book ''Grundlagen der Mathematik''. The standard axiomatization of second-order arithmetic is denoted by Z2. Second-order arithmetic includes, but is significantly stronger than, its first-order logic, first-order counterpart Peano_axioms#Peano_arithmetic_as_first-order_theory, Peano arithmetic. Unlike Peano arithmetic, second-order arithmetic allows Quantification (logic), quantification over sets of natural numbers as well as numbers themselves. Because real numbers can be represented as (infinite set, infinite) sets of natural numbers in well-known ways, and because second-order arithmet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ordinal Notation
In mathematical logic and set theory, an ordinal notation is a partial function mapping the set of all finite sequences of symbols, themselves members of a finite alphabet, to a countable set of ordinals. A Gödel numbering is a function mapping the set of well-formed formulae (a finite sequence of symbols on which the ordinal notation function is defined) of some formal language to the natural numbers. This associates each well-formed formula with a unique natural number, called its Gödel number. If a Gödel numbering is fixed, then the subset relation on the ordinals induces an ordering on well-formed formulae which in turn induces a well-ordering on the subset of natural numbers. A recursive ordinal notation must satisfy the following two additional properties: # the subset of natural numbers is a recursive set # the induced well-ordering on the subset of natural numbers is a recursive relation There are many such schemes of ordinal notations, including schemes by Wilhelm Acke ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Peano Arithmetic
In mathematical logic, the Peano axioms (, ), also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete. The axiomatization of arithmetic provided by Peano axioms is commonly called Peano arithmetic. The importance of formalizing arithmetic was not well appreciated until the work of Hermann Grassmann, who showed in the 1860s that many facts in arithmetic could be derived from more basic facts about the successor operation and induction. In 1881, Charles Sanders Peirce provided an axiomatization of natural-number arithmetic. In 1888, Richard Dedekind proposed another axiomatization of natural-number arithmetic, and in 1889, Peano published a simplified version of them a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Moscow State University
Moscow State University (MSU), officially M. V. Lomonosov Moscow State University,. is a public university, public research university in Moscow, Russia. The university includes 15 research institutes, 43 faculties, more than 300 departments, and six branches. Alumni of the university include past leaders of the Soviet Union and other governments. As of 2019, 13 List of Nobel laureates, Nobel laureates, six Fields Medal winners, and one Turing Award winner were affiliated with the university. History Imperial Moscow University Ivan Shuvalov and Mikhail Lomonosov promoted the idea of a university in Moscow, and Elizabeth of Russia, Russian Empress Elizabeth decreed its establishment on . The first lectures were given on . Saint Petersburg State University and MSU each claim to be Russia's oldest university. Though Moscow State University was founded in 1755, St. Petersburg which has had a continuous existence as a "university" since 1819 sees itself as the successor of an a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




PSPACE-complete
In computational complexity theory, a decision problem is PSPACE-complete if it can be solved using an amount of memory that is polynomial in the input length (PSPACE, polynomial space) and if every other problem that can be solved in polynomial space can be Polynomial-time reduction, transformed to it in polynomial time. The problems that are PSPACE-complete can be thought of as the hardest problems in PSPACE, the class of decision problems solvable in polynomial space, because a solution to any one such problem could easily be used to solve any other problem in PSPACE. Problems known to be PSPACE-complete include determining properties of regular expressions and context-sensitive grammars, determining the truth of quantified Boolean formula problem, quantified Boolean formulas, step-by-step changes between solutions of combinatorial optimization problems, and many puzzles and games. Theory A problem is defined to be PSPACE-complete if it can be solved using a polynomial amount o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polytopological Space
In general topology, a polytopological space consists of a set X together with a family \_ of topologies on X that is linearly ordered by the inclusion relation where I is an arbitrary index set. It is usually assumed that the topologies are in non-decreasing order. However some authors prefer the associated closure operators \_ to be in non-decreasing order where k_i\leq k_j if and only if k_iA\subseteq k_jA for all A\subseteq X. This requires non-increasing topologies. Formal definitions An L-topological space (X,\tau) is a set X together with a monotone map \tau:L\to Top(X) where (L,\leq) is a partially ordered set and Top(X) is the set of all possible topologies on X, ordered by inclusion. When the partial order \leq is a linear order then (X,\tau) is called a polytopological space. Taking L to be the ordinal number n=\, an n-topological space (X,\tau_0,\dots,\tau_) can be thought of as a set X with topologies \tau_0\subseteq\dots\subseteq\tau_ on it. More generally a mu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kripke Frame
Kripke semantics (also known as relational semantics or frame semantics, and often confused with possible world semantics) is a formal semantics for non-classical logic systems created in the late 1950s and early 1960s by Saul Kripke and André Joyal. It was first conceived for modal logics, and later adapted to intuitionistic logic and other non-classical systems. The development of Kripke semantics was a breakthrough in the theory of non-classical logics, because the model theory of such logics was almost non-existent before Kripke (algebraic semantics existed, but were considered 'syntax in disguise'). Semantics of modal logic The language of propositional modal logic consists of a countably infinite set of propositional variables, a set of truth-functional connectives (in this article \to and \neg), and the modal operator \Box ("necessarily"). The modal operator \Diamond ("possibly") is (classically) the dual of \Box and may be defined in terms of necessity like so: \Dia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


George Boolos
George Stephen Boolos (; September 4, 1940 – May 27, 1996) was an American philosopher and a mathematical logician who taught at the Massachusetts Institute of Technology. Life Boolos was of Greek-Jewish descent. He graduated with an A.B. in mathematics from Princeton University after completing a senior thesis, titled "A simple proof of Gödel's first incompleteness theorem", under the supervision of Raymond Smullyan. Oxford University awarded him the B.Phil. in 1963. In 1966, he obtained the first PhD in philosophy ever awarded by the Massachusetts Institute of Technology, under the direction of Hilary Putnam. After teaching three years at Columbia University, he returned to MIT in 1969, where he spent the rest of his career. A charismatic speaker well known for his clarity and wit, he once delivered a lecture (1994b) giving an account of Gödel's second incompleteness theorem, employing only words of one syllable. At the end of his viva, Hilary Putnam asked him, "A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modal Logic
Modal logic is a kind of logic used to represent statements about Modality (natural language), necessity and possibility. In philosophy and related fields it is used as a tool for understanding concepts such as knowledge, obligation, and causality, causation. For instance, in epistemic modal logic, the well-formed_formula, formula \Box P can be used to represent the statement that P is known. In deontic modal logic, that same formula can represent that P is a moral obligation. Modal logic considers the inferences that modal statements give rise to. For instance, most epistemic modal logics treat the formula \Box P \rightarrow P as a Tautology_(logic), tautology, representing the principle that only true statements can count as knowledge. However, this formula is not a tautology in deontic modal logic, since what ought to be true can be false. Modal logics are formal systems that include unary operation, unary operators such as \Diamond and \Box, representing possibility and necessi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Peano Arithmetic
In mathematical logic, the Peano axioms (, ), also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete. The axiomatization of arithmetic provided by Peano axioms is commonly called Peano arithmetic. The importance of formalizing arithmetic was not well appreciated until the work of Hermann Grassmann, who showed in the 1860s that many facts in arithmetic could be derived from more basic facts about the successor operation and induction. In 1881, Charles Sanders Peirce provided an axiomatization of natural-number arithmetic. In 1888, Richard Dedekind proposed another axiomatization of natural-number arithmetic, and in 1889, Peano published a simplified version of them a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]