HOME
*





Identity Of Indiscernibles
The identity of indiscernibles is an ontological principle that states that there cannot be separate objects or entities that have all their properties in common. That is, entities ''x'' and ''y'' are identical if every predicate possessed by ''x'' is also possessed by ''y'' and vice versa. It states that no two distinct things (such as snowflakes) can be exactly alike, but this is intended as a metaphysical principle rather than one of natural science. A related principle is the indiscernibility of identicals, discussed below. A form of the principle is attributed to the German philosopher Gottfried Wilhelm Leibniz. While some think that Leibniz's version of the principle is meant to be only the indiscernibility of identicals, others have interpreted it as the conjunction of the identity of indiscernibles and the indiscernibility of identicals (the converse principle). Because of its association with Leibniz, the indiscernibility of identicals is sometimes known as Leibniz's law. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ontology
In metaphysics, ontology is the philosophy, philosophical study of being, as well as related concepts such as existence, Becoming (philosophy), becoming, and reality. Ontology addresses questions like how entities are grouped into Category of being, categories and which of these entities exist on the most fundamental level. Ontologists often try to determine what the categories or highest kinds are and how they form a system of categories that encompasses classification of all entities. Commonly proposed categories include Substance (philosophy), substances, Property (philosophy), properties, Relations (philosophy), relations, State of affairs (philosophy), states of affairs and Event (philosophy), events. These categories are characterized by fundamental ontological concepts, including particularity and universality, abstractness and concreteness, or possibility and necessity. Of special interest is the concept of ontological dependence, which determines whether the entities ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Disquotational Principle
The disquotational principle is a philosophical principle which holds that a rational speaker will accept "''p''" if and only if he or she believes ''p''. The quotes indicate that the statement ''p'' is being treated as a sentence, and not as a proposition. This principle is presupposed by claims that hold that substitution fails in certain intensional contexts. Overview Consider the following argument: :(1) Sally accepts the assertion that "Cicero was a famous orator" while dissenting from the assertion that "Tully was a famous orator". :(2) Cicero is Tully :Therefore, (3) Sally believes that Tully was a famous orator. To derive (3), we have to assume that when Sally accepts that "Cicero was a famous orator", she believes that Cicero was a famous orator. Then we can exchange Cicero for Tully, and derive (3). Bertrand Russell thought that this demonstrated the failure of substitutivity of identicals in intensional contexts. In "A Puzzle about Belief,"Kripke, Saul. "A Puzzle abo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symmetric Relation
A symmetric relation is a type of binary relation. An example is the relation "is equal to", because if ''a'' = ''b'' is true then ''b'' = ''a'' is also true. Formally, a binary relation ''R'' over a set ''X'' is symmetric if: :\forall a, b \in X(a R b \Leftrightarrow b R a) , where the notation aRb means that (a,b)\in R. If ''R''T represents the converse of ''R'', then ''R'' is symmetric if and only if ''R'' = ''R''T. Symmetry, along with reflexivity and transitivity, are the three defining properties of an equivalence relation. Examples In mathematics * "is equal to" ( equality) (whereas "is less than" is not symmetric) * "is comparable to", for elements of a partially ordered set * "... and ... are odd": :::::: Outside mathematics * "is married to" (in most legal systems) * "is a fully biological sibling of" * "is a homophone A homophone () is a word that is pronounced the same (to varying extent) as another word but differs in meaning. A ''homophone'' may also dif ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reflexive Relation
In mathematics, a binary relation ''R'' on a set ''X'' is reflexive if it relates every element of ''X'' to itself. An example of a reflexive relation is the relation " is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity. Along with symmetry and transitivity, reflexivity is one of three properties defining equivalence relations. Definitions Let R be a binary relation on a set X, which by definition is just a subset of X \times X. For any x, y \in X, the notation x R y means that (x, y) \in R while "not x R y" means that (x, y) \not\in R. The relation R is called if x R x for every x \in X or equivalently, if \operatorname_X \subseteq R where \operatorname_X := \ denotes the identity relation on X. The of R is the union R \cup \operatorname_X, which can equivalently be defined as the smallest (with respect to \subseteq) reflexive relation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equivalence Relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class. Notation Various notations are used in the literature to denote that two elements a and b of a set are equivalent with respect to an equivalence relation R; the most common are "a \sim b" and "", which are used when R is implicit, and variations of "a \sim_R b", "", or "" to specify R explicitly. Non-equivalence may be written "" or "a \not\equiv b". Definition A binary relation \,\sim\, on a set X is said to be an equivalence relation, if and only if it is reflexive, symmetric and transitive. That is, for all a, b, and c in X: * a \sim a ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equality (mathematics)
In mathematics, equality is a relationship between two quantities or, more generally two mathematical expressions, asserting that the quantities have the same value, or that the expressions represent the same mathematical object. The equality between and is written , and pronounced equals . The symbol "" is called an "equals sign". Two objects that are not equal are said to be distinct. For example: * x=y means that and denote the same object. * The identity (x+1)^2=x^2+2x+1 means that if is any number, then the two expressions have the same value. This may also be interpreted as saying that the two sides of the equals sign represent the same function. * \ = \ if and only if P(x) \Leftrightarrow Q(x). This assertion, which uses set-builder notation, means that if the elements satisfying the property P(x) are the same as the elements satisfying Q(x), then the two uses of the set-builder notation define the same set. This property is often expressed as "two sets that have t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Tautology (logic)
In mathematical logic, a tautology (from el, ταυτολογία) is a formula or assertion that is true in every possible interpretation. An example is "x=y or x≠y". Similarly, "either the ball is green, or the ball is not green" is always true, regardless of the colour of the ball. The philosopher Ludwig Wittgenstein first applied the term to redundancies of propositional logic in 1921, borrowing from rhetoric, where a tautology is a repetitive statement. In logic, a formula is satisfiable if it is true under at least one interpretation, and thus a tautology is a formula whose negation is unsatisfiable. In other words, it cannot be false. It cannot be untrue. Unsatisfiable statements, both through negation and affirmation, are known formally as contradictions. A formula that is neither a tautology nor a contradiction is said to be logically contingent. Such a formula can be made either true or false based on the values assigned to its propositional variables. The d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Max Black
Max Black (24 February 1909 – 27 August 1988) was an Azerbaijani-born British-American philosopher who was a leading figure in analytic philosophy in the years after World War II. He made contributions to the philosophy of language, the philosophy of mathematics and science, and the philosophy of art, also publishing studies of the work of philosophers such as Frege. His translation (with Peter Geach) of Frege's published philosophical writing is a classic text. Life and career Born in Baku, present-day Azerbaijan, of Jewish descent, Black grew up in London, where his family had moved in 1912. He studied mathematics at Queens' College, Cambridge, where he developed an interest in the philosophy of mathematics. Russell, Wittgenstein, G. E. Moore, and Ramsey were all at Cambridge at that time, and their influence on Black may have been considerable. He graduated in 1930 and was awarded a fellowship to study at Göttingen for a year. From 1931–36, he was mathematics maste ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Logical Truth
Logical truth is one of the most fundamental concepts in logic. Broadly speaking, a logical truth is a statement which is true regardless of the truth or falsity of its constituent propositions. In other words, a logical truth is a statement which is not only true, but one which is true under all interpretations of its logical components (other than its logical constants). Thus, logical truths such as "if p, then p" can be considered tautologies. Logical truths are thought to be the simplest case of statements which are analytically true (or in other words, true by definition). All of philosophical logic can be thought of as providing accounts of the nature of logical truth, as well as logical consequence. Logical truths are generally considered to be ''necessarily true''. This is to say that they are such that no situation could arise in which they could fail to be true. The view that logical statements are necessarily true is sometimes treated as equivalent to saying that l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nonfirstorderizability
In formal logic, nonfirstorderizability is the inability of a natural-language statement to be adequately captured by a formula of first-order logic. Specifically, a statement is nonfirstorderizable if there is no formula of first-order logic which is true in a model if and only if the statement holds in that model. Nonfirstorderizable statements are sometimes presented as evidence that first-order logic is not adequate to capture the nuances of meaning in natural language. The term was coined by George Boolos in his paper "To Be is to Be a Value of a Variable (or to Be Some Values of Some Variables)". Reprinted in Quine argued that such sentences call for second-order symbolization, which can be interpreted as plural quantification over the same domain as first-order quantifiers use, without postulation of distinct "second-order objects" (properties, sets, etc.). Examples Geach-Kaplan sentence A standard example is the ''Geach– Kaplan sentence'': "Some critics admire on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

First-order Logic
First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists''"'' is a quantifier, while ''x'' is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic. A theory about a topic is usually a first-order logic together with a specified domain of discourse (over which the quantified variables range), finitely many functions from that domain to itself, finitely many predicates defined on that domain, and a set of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Second-order Logic
In logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory. First-order logic quantifies only variables that range over individuals (elements of the domain of discourse); second-order logic, in addition, also quantifies over relations. For example, the second-order sentence \forall P\,\forall x (Px \lor \neg Px) says that for every formula ''P'', and every individual ''x'', either ''Px'' is true or not(''Px'') is true (this is the law of excluded middle). Second-order logic also includes quantification over sets, functions, and other variables (see section below). Both first-order and second-order logic use the idea of a domain of discourse (often called simply the "domain" or the "universe"). The domain is a set over which individual elements may be quantified. Examples First-order logic can quantify over individuals, but ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]