HOME





IBM Quantum Platform
IBM Quantum Platform (previously known as IBM Quantum Experience) is an online platform allowing public and premium access to cloud-based quantum computing services provided by IBM. This includes access to a set of IBM's prototype quantum processors, a set of tutorials on quantum computation, and access to an interactive textbook. As of February 2021, there are over 20 devices on the service, six of which are freely available for the public. This service can be used to run quantum algorithm, algorithms and experiments, and explore tutorials and simulations around what might be possible with quantum computing. IBM's quantum processors are made up of Superconducting quantum computing, superconducting transmon qubits, located in dilution refrigerators at the IBM Research headquarters at the Thomas J. Watson Research Center. Users interact with a quantum processor through the quantum circuit model of computation. Circuits can be created either graphical user interface, graphically wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cloud-based Quantum Computing
Cloud-based quantum computing is the invocation of quantum emulators, simulators or processors through the cloud. Increasingly, cloud services are being looked on as the method for providing access to quantum processing. Quantum computers achieve their massive computing power by initiating quantum physics into processing power and when users are allowed access to these quantum-powered computers through the internet it is known as quantum computing within the cloud. In 2016, IBM connected a small quantum computer to the cloud and it allows for simple programs to be built and executed on the cloud. In early 2017, researchers from Rigetti Computing demonstrated the first programmable cloud access using the pyQuil Python library. Many people from academic researchers and professors to schoolkids, have already built programs that run many different quantum algorithms using the program tools. Some consumers hoped to use the fast computing to model financial markets or to build more ad ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Qiskit
Qiskit is an open-source software development kit (SDK) for working with quantum computers at the level of circuits, pulses, and algorithms. It provides tools for creating and manipulating quantum programs and running them on prototype quantum devices on IBM Quantum Experience or on simulators on a local computer. It follows the circuit model for universal quantum computation, and can be used for any quantum hardware (currently supports superconducting qubits and trapped ions) that follows this model. Qiskit was founded by IBM Research to allow software development for their cloud quantum computing service, IBM Quantum Experience. Contributions are also made by external supporters, typically from academic institutions. The primary version of Qiskit uses the Python programming language. Versions for Swift and JavaScript were initially explored, though the development for these versions have halted. Instead, a minimal re-implementation of basic features is available as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Measurement In Quantum Mechanics
In quantum physics, a measurement is the testing or manipulation of a physical system to yield a numerical result. The predictions that quantum physics makes are in general probabilistic. The mathematical tools for making predictions about what measurement outcomes may occur were developed during the 20th century and make use of linear algebra and functional analysis. Quantum physics has proven to be an empirical success and to have wide-ranging applicability. However, on a more philosophical level, debates continue about the meaning of the measurement concept. Mathematical formalism "Observables" as self-adjoint operators In quantum mechanics, each physical system is associated with a Hilbert space, each element of which represents a possible state of the physical system. The approach codified by John von Neumann represents a measurement upon a physical system by a self-adjoint operator on that Hilbert space termed an "observable". These observables play the role of measurable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quantum Register
In quantum computing, a quantum register is a system comprising multiple qubits. It is the quantum analogue of the classical processor register. Quantum computers perform calculations by manipulating qubits within a quantum register. Definition It is usually assumed that the register consists of qubits. It is also generally assumed that registers are not density matrices, but that they are pure, although the definition of "register" can be extended to density matrices. An n size quantum register is a quantum system comprising n pure qubits. The Hilbert space, \mathcal, in which the data is stored in a quantum register is given by \mathcal = \mathcal\otimes\mathcal\otimes\ldots\otimes\mathcal where \otimes is the tensor product. The number of dimensions of the Hilbert spaces depend on what kind of quantum systems the register is composed of. Qubits are 2-dimensional complex spaces (\mathbb^2), while qutrits are 3-dimensional complex spaces (\mathbb^3), et.c. For a regist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Gate
In quantum computing and specifically the quantum circuit model of computation, a quantum logic gate (or simply quantum gate) is a basic quantum circuit operating on a small number of qubits. They are the building blocks of quantum circuits, like classical logic gates are for conventional digital circuits. Unlike many classical logic gates, quantum logic gates are reversible. It is possible to perform classical computing using only reversible gates. For example, the reversible Toffoli gate can implement all Boolean functions, often at the cost of having to use ancilla bits. The Toffoli gate has a direct quantum equivalent, showing that quantum circuits can perform all operations performed by classical circuits. Quantum gates are unitary operators, and are described as unitary matrices relative to some basis. Usually we use the ''computational basis'', which unless we compare it with something, just means that for a ''d''-level quantum system (such as a qubit, a quantum ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wave-function Collapse
In quantum mechanics, wave function collapse occurs when a wave function—initially in a superposition of several eigenstates—reduces to a single eigenstate due to interaction with the external world. This interaction is called an ''observation'', and is the essence of a measurement in quantum mechanics, which connects the wave function with classical observables such as position and momentum. Collapse is one of the two processes by which quantum systems evolve in time; the other is the continuous evolution governed by the Schrödinger equation. : Collapse is a black box for a thermodynamically irreversible interaction with a classical environment. Calculations of quantum decoherence show that when a quantum system interacts with the environment, the superpositions ''apparently'' reduce to mixtures of classical alternatives. Significantly, the combined wave function of the system and environment continue to obey the Schrödinger equation throughout this ''apparent'' colla ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bell State
The Bell states or EPR pairs are specific quantum states of two qubits that represent the simplest (and maximal) examples of quantum entanglement; conceptually, they fall under the study of quantum information science. The Bell states are a form of entangled and normalized basis vectors. This normalization implies that the overall probability of the particle being in one of the mentioned states is 1: \langle \Phi, \Phi \rangle = 1. Entanglement is a basis-independent result of superposition. Due to this superposition, measurement of the qubit will " collapse" it into one of its basis states with a given probability. Because of the entanglement, measurement of one qubit will "collapse" the other qubit to a state whose measurement will yield one of two possible values, where the value depends on which Bell state the two qubits are in initially. Bell states can be generalized to certain quantum states of multi-qubit systems, such as the GHZ state for 3 or more subsystems. Under ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Greenberger–Horne–Zeilinger State
In physics, in the area of quantum information theory, a Greenberger–Horne–Zeilinger state (GHZ state) is a certain type of entangled quantum state that involves at least three subsystems (particle states, qubits, or qudits). It was first studied by Daniel Greenberger, Michael Horne and Anton Zeilinger in 1989. Extremely non-classical properties of the state have been observed. Definition The GHZ state is an entangled quantum state for 3 qubits and its state is :, \mathrm\rangle = \frac. Generalization The generalized GHZ state is an entangled quantum state of subsystems. If each system has dimension d, i.e., the local Hilbert space is isomorphic to \mathbb^d, then the total Hilbert space of partite system is \mathcal_=(\mathbb^d)^. This GHZ state is also named as M-partite qudit GHZ state, it reads :, \mathrm\rangle=\frac\sum_^, i\rangle\otimes\cdots\otimes, i\rangle=\frac(, 0\rangle\otimes\cdots\otimes, 0\rangle+\cdots+, d-1\rangle\otimes\cdots\otimes, d-1\r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum State
In quantum physics, a quantum state is a mathematical entity that provides a probability distribution for the outcomes of each possible measurement on a system. Knowledge of the quantum state together with the rules for the system's evolution in time exhausts all that can be predicted about the system's behavior. A mixture of quantum states is again a quantum state. Quantum states that cannot be written as a mixture of other states are called pure quantum states, while all other states are called mixed quantum states. A pure quantum state can be represented by a ray in a Hilbert space over the complex numbers, while mixed states are represented by density matrices, which are positive semidefinite operators that act on Hilbert spaces. Pure states are also known as state vectors or wave functions, the latter term applying particularly when they are represented as functions of position or momentum. For example, when dealing with the energy spectrum of the electron in a hydrogen a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Qubit
In quantum computing, a qubit () or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, one of the simplest quantum systems displaying the peculiarity of quantum mechanics. Examples include the spin of the electron in which the two levels can be taken as spin up and spin down; or the polarization of a single photon in which the two states can be taken to be the vertical polarization and the horizontal polarization. In a classical system, a bit would have to be in one state or the other. However, quantum mechanics allows the qubit to be in a coherent superposition of both states simultaneously, a property that is fundamental to quantum mechanics and quantum computing. Etymology The coining of the term ''qubit'' is attributed to Benjamin Schumacher. In the acknowledgments of his 1995 paper, Schumacher states that the term ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graphic User Interface
The GUI ( "UI" by itself is still usually pronounced . or ), graphical user interface, is a form of user interface that allows users to interact with electronic devices through graphical icons and audio indicator such as primary notation, instead of text-based UIs, typed command labels or text navigation. GUIs were introduced in reaction to the perceived steep learning curve of CLIs ( command-line interfaces), which require commands to be typed on a computer keyboard. The actions in a GUI are usually performed through direct manipulation of the graphical elements. Beyond computers, GUIs are used in many handheld mobile devices such as MP3 players, portable media players, gaming devices, smartphones and smaller household, office and industrial controls. The term ''GUI'' tends not to be applied to other lower-display resolution types of interfaces, such as video games (where HUD (''head-up display'') is preferred), or not including flat screens like volumetric displays becau ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]