Hasse Derivative
In mathematics, the Hasse derivative is a generalisation of the derivative which allows the formulation of Taylor's theorem in coordinate rings of algebraic varieties. Definition Let ''k'' 'X''be a polynomial ring In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, ... over a field ''k''. The ''r''-th Hasse derivative of ''X''''n'' is :D^ X^n = \binom X^, if ''n'' ≥ ''r'' and zero otherwise.Goldschmidt (2003) p.28 In characteristic zero we have :D^ = \frac \left(\frac\right)^r \ . Properties The Hasse derivative is a generalized derivation on ''k'' 'X''and extends to a generalized derivation on the function field ''k''(''X''), satisfying an analogue of the product rule :D^(fg) = \sum_^r D^(f) D^(g) and an analogue of the chain rule.Goldschmidt (2003) p.29 Note that the D^ a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Derivative
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point. The tangent line is the best linear approximation of the function near that input value. For this reason, the derivative is often described as the instantaneous rate of change, the ratio of the instantaneous change in the dependent variable to that of the independent variable. The process of finding a derivative is called differentiation. There are multiple different notations for differentiation. '' Leibniz notation'', named after Gottfried Wilhelm Leibniz, is represented as the ratio of two differentials, whereas ''prime notation'' is written by adding a prime mark. Higher order notations represent repeated differentiation, and they are usually denoted in Leib ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Taylor's Theorem
In calculus, Taylor's theorem gives an approximation of a k-times differentiable function around a given point by a polynomial of degree k, called the k-th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the truncation at the order ''k'' of the Taylor series of the function. The first-order Taylor polynomial is the linear approximation of the function, and the second-order Taylor polynomial is often referred to as the quadratic approximation. There are several versions of Taylor's theorem, some giving explicit estimates of the approximation error of the function by its Taylor polynomial. Taylor's theorem is named after the mathematician Brook Taylor, who stated a version of it in 1715, although an earlier version of the result was already mentioned in 1671 in science, 1671 by James Gregory (astronomer and mathematician), James Gregory. Taylor's theorem is taught in introductory-level calculus courses and is one of the central elementary tools in mathemat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Coordinate Ring
In algebraic geometry, an affine variety or affine algebraic variety is a certain kind of algebraic variety that can be described as a subset of an affine space. More formally, an affine algebraic set is the set of the common zeros over an algebraically closed field of some family of polynomials in the polynomial ring k _1, \ldots,x_n An affine variety is an affine algebraic set which is not the union of two smaller algebraic sets; algebraically, this means that (the radical of) the ideal generated by the defining polynomials is prime. One-dimensional affine varieties are called affine algebraic curves, while two-dimensional ones are affine algebraic surfaces. Some texts use the term ''variety'' for any algebraic set, and ''irreducible variety'' an algebraic set whose defining ideal is prime (affine variety in the above sense). In some contexts (see, for example, Hilbert's Nullstellensatz), it is useful to distinguish the field in which the coefficients are considered, fr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Varieties
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition. Conventions regarding the definition of an algebraic variety differ slightly. For example, some definitions require an algebraic variety to be irreducible, which means that it is not the union of two smaller sets that are closed in the Zariski topology In algebraic geometry and commutative algebra, the Zariski topology is a topology defined on geometric objects called varieties. It is very different from topologies that are commonly used in real or complex analysis; in particular, it is not .... Under this definition, non-irreducible algebraic varieties are called algebraic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polynomial Ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, often a field. Often, the term "polynomial ring" refers implicitly to the special case of a polynomial ring in one indeterminate over a field. The importance of such polynomial rings relies on the high number of properties that they have in common with the ring of the integers. Polynomial rings occur and are often fundamental in many parts of mathematics such as number theory, commutative algebra, and algebraic geometry. In ring theory, many classes of rings, such as unique factorization domains, regular rings, group rings, rings of formal power series, Ore polynomials, graded rings, have been introduced for generalizing some properties of polynomial rings. A closely related notion is that of the ring of polynomial functions on a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Field (algebra)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The theory of fields proves that angle trisection and squaring the circle cannot be done with a compass and straightedge. Galois theory, devoted to understanding the symmetries of field extensions, provides an elegant proof of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Characteristic (algebra)
In mathematics, the characteristic of a ring , often denoted , is defined to be the smallest positive number of copies of the ring's multiplicative identity () that will sum to the additive identity (). If no such number exists, the ring is said to have characteristic zero. That is, is the smallest positive number such that: : \underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent of the ring's additive group, that is, the smallest positive integer such that: : \underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). This definition applies in the more general class of rngs (see '); for (unital) rings the two definitions are equivalent due to their distributive law. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Function Field Of An Algebraic Variety
In algebraic geometry, the function field of an algebraic variety ''V'' consists of objects that are interpreted as rational functions on ''V''. In classical algebraic geometry they are ratios of polynomials; in complex geometry these are meromorphic functions and their higher-dimensional analogues; in modern algebraic geometry they are elements of some quotient ring's field of fractions. Definition for complex manifolds In complex geometry the objects of study are complex analytic varieties, on which we have a local notion of complex analysis, through which we may define meromorphic functions. The function field of a variety is then the set of all meromorphic functions on the variety. (Like all meromorphic functions, these take their values in \mathbb\cup\.) Together with the operations of addition and multiplication of functions, this is a field in the sense of algebra. For the Riemann sphere, which is the variety \mathbb^1 over the complex numbers, the global meromorphic fu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Derivation (differential Algebra)
In mathematics, a derivation is a function on an algebra that generalizes certain features of the derivative operator. Specifically, given an algebra ''A'' over a ring or a field ''K'', a ''K''-derivation is a ''K''-linear map that satisfies Leibniz's law: : D(ab) = a D(b) + D(a) b. More generally, if ''M'' is an ''A''-bimodule, a ''K''-linear map that satisfies the Leibniz law is also called a derivation. The collection of all ''K''-derivations of ''A'' to itself is denoted by Der''K''(''A''). The collection of ''K''-derivations of ''A'' into an ''A''-module ''M'' is denoted by . Derivations occur in many different contexts in diverse areas of mathematics. The partial derivative with respect to a variable is an R-derivation on the algebra of real-valued differentiable functions on R''n''. The Lie derivative with respect to a vector field is an R-derivation on the algebra of differentiable functions on a differentiable manifold; more generally it is a derivation on the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Local Parameter
In the geometry of complex algebraic curves, a local parameter for a curve ''C'' at a smooth point ''P'' is a meromorphic function on ''C'' that has a simple zero at ''P.'' This concept can be generalized to curves defined over fields other than \mathbb (or schemes), because the local ring at a smooth point ''P'' of an algebraic curve ''C'' (defined over an algebraically closed field) is always a discrete valuation ring. This valuation will show a way to count the order (at the point ''P'') of rational functions (which are natural generalizations for meromorphic functions in the non-complex realm) having a zero or a pole at ''P''. Local parameters, as its name indicates, are used mainly to properly ''count multiplicities'' in a local way. Introduction If ''C'' is a complex algebraic curve, count multiplicities of zeroes and poles of meromorphic functions defined on it.R. Miranda (1995). ''Algebraic curves and Riemann surfaces''. American Mathematical Society. p. 26 However, when ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graduate Texts In Mathematics
Graduate Texts in Mathematics (GTM) () is a series of graduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standard size (with variable numbers of pages). The GTM series is easily identified by a white band at the top of the book. The books in this series tend to be written at a more advanced level than the similar Undergraduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level. List of books #''Introduction to Axiomatic Set Theory'', Gaisi Takeuti, Wilson M. Zaring (1982, 2nd ed., ) #''Measure and Category – A Survey of the Analogies between Topological and Measure Spaces'', John C. Oxtoby (1980, 2nd ed., ) #''Topological Vector Spaces'', H. H. Schaefer, M. P. Wolff (1999, 2nd ed., ) #''A Course in Homological Algebra'', Peter Hilton, Urs Stammbach (1997, 2 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second-largest academic publisher with 65 staff in 1872.Chronology ". Springer Science+Business Media. In 1964, Springer expanded its business internationally, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |