HOME
*





HDQKD
High-dimensional quantum key distribution (HDQKD) is a technology for secure communication between two parties. It allows for higher information efficiency than traditional binary quantum key distribution (QKD) protocols, which are limited to 1 bit/photon. HDQKD also exhibits higher resilience to noise, enabling lower signal-to-noise ratios and longer transmission distances. Implementation One way to implement HDQKD is by using space division multiplexing technology and encoding quantum information in the spatial dimension, such as with optical angular momentum (OAM) modes. While OAM modes have been demonstrated for HDQKD over free-space links, transmission over long-distance fiber Fiber or fibre (from la, fibra, links=no) is a natural or artificial substance that is significantly longer than it is wide. Fibers are often used in the manufacture of other materials. The strongest engineering materials often incorpora ... links is challenging due to intermodal crosstalk. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Quantum Key Distribution Protocols
Quantum key distribution (QKD) protocols are used in quantum key distribution. The first protocol of that kind was BB84, introduced in 1984 by Charles H. Bennett and Gilles Brassard. After that, many other protocols have been defined. List of quantum key distribution protocols *BB84 (1984) is a quantum key distribution scheme that allows two parties to securely communicate a private key for use in one-time pad encryption using the quantum property that information gain is only possible at the expense of disturbing the signal if the two states one is trying to distinguish are not orthogonal and an authenticated public classical channel. *E91 protocol (1991) is a quantum cryptography method that uses entangled pairs of photons to generate keys for secure communication, with the ability to detect any attempts at eavesdropping by an external party through the violation of Bell's Theorem and the preservation of perfect correlation between the measurements of the two parties. *BBM92 p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Secure Communication
Secure communication is when two entities are communicating and do not want a third party to listen in. For this to be the case, the entities need to communicate in a way that is unsusceptible to eavesdropping or interception. Secure communication includes means by which people can share information with varying degrees of certainty that third parties cannot intercept what is said. Other than spoken face-to-face communication with no possible eavesdropper, it is probably safe to say that no communication is guaranteed to be secure in this sense, although practical obstacles such as legislation, resources, technical issues (interception and encryption), and the sheer volume of communication serve to limit surveillance. With many communications taking place over long distance and mediated by technology, and increasing awareness of the importance of interception issues, technology and its compromise are at the heart of this debate. For this reason, this article focuses on communicati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Key Distribution
Quantum key distribution (QKD) is a secure communication method which implements a cryptographic protocol involving components of quantum mechanics. It enables two parties to produce a shared random secret key known only to them, which can then be used to encrypt and decrypt messages. It is often incorrectly called quantum cryptography, as it is the best-known example of a quantum cryptographic task. An important and unique property of quantum key distribution is the ability of the two communicating users to detect the presence of any third party trying to gain knowledge of the key. This results from a fundamental aspect of quantum mechanics: the process of measuring a quantum system in general disturbs the system. A third party trying to eavesdrop on the key must in some way measure it, thus introducing detectable anomalies. By using quantum superpositions or quantum entanglement and transmitting information in quantum states, a communication system can be implemented that dete ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are Massless particle, massless, so they always move at the speed of light, speed of light in vacuum, (or about ). The photon belongs to the class of bosons. As with other elementary particles, photons are best explained by quantum mechanics and exhibit wave–particle duality, their behavior featuring properties of both waves and particles. The modern photon concept originated during the first two decades of the 20th century with the work of Albert Einstein, who built upon the research of Max Planck. While trying to explain how matter and electromagnetic radiation could be in thermal equilibrium with one another, Planck proposed that the energy stored within a material object should be regarded as composed of an integer number of discrete, equal-sized parts. To explai ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Signal-to-noise Ratio
Signal-to-noise ratio (SNR or S/N) is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to the noise power, often expressed in decibels. A ratio higher than 1:1 (greater than 0 dB) indicates more signal than noise. SNR, bandwidth, and channel capacity of a communication channel are connected by the Shannon–Hartley theorem. Definition Signal-to-noise ratio is defined as the ratio of the power of a signal (meaningful input) to the power of background noise (meaningless or unwanted input): : \mathrm = \frac, where is average power. Both signal and noise power must be measured at the same or equivalent points in a system, and within the same system bandwidth. Depending on whether the signal is a constant () or a random variable (), the signal-to-noise ratio for random noise becomes: : \mathrm = \frac where E refers to the expected value, i.e. in thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Spatial Multiplexing
Spatial multiplexing or space-division multiplexing (often abbreviated SM, SDM or SMX) is a multiplexing technique in MIMO wireless communication, fibre-optic communication and other communications technologies used to transmit independent channels separated in space. ( Other multiplexing techniques include FDM (frequency-division multiplexing), TDM (time-division multiplexing) or PDM ( polarization-division multiplexing). ) Fibre-optic communication In fibre-optic communication SDM refers to the usage of the transverse dimension of the fibre to separate the channels. Techniques Multi-core fibre (MCF) Multi-core fibres are fibres designed with more than a single core. Amongst different types of MCFs exist, “Uncoupled MCF” is the most common in which each core is treated to be an independent optical path resulting in increasing in channel capacity. However, the main limitation to these systems is the presence of inter core crosstalk and ways to deal it as well as t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fiber-optic Communication
Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of infrared light through an optical fiber. The light is a form of carrier wave that is modulated to carry information. Fiber is preferred over electrical cabling when high bandwidth, long distance, or immunity to electromagnetic interference is required. This type of communication can transmit voice, video, and telemetry through local area networks or across long distances. Optical fiber is used by many telecommunications companies to transmit telephone signals, internet communication, and cable television signals. Researchers at Bell Labs have reached a record bandwidth–distance product of over kilometers per second using fiber-optic communication. Background First developed in the 1970s, fiber-optics have revolutionized the telecommunications industry and have played a major role in the advent of the Information Age. Because of its advantages over electr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cryptographic Algorithms
Cryptography, or cryptology (from grc, , translit=kryptós "hidden, secret"; and ''graphein'', "to write", or ''-logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others. Core concepts related to information security ( data confidentiality, data integrity, authentication, and non-repudiation) are also central to cryptography. Practical applications of cryptography include electronic commerce, chip-based payment cards, digital currencies, computer passwords, and military communications. Cryptography prior to the modern age was effectively synonymous with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Information Science
Quantum information science is an interdisciplinary field that seeks to understand the analysis, processing, and transmission of information using quantum mechanics principles. It combines the study of Information science with quantum effects in physics. It includes theoretical issues in computational models and more experimental topics in quantum physics, including what can and cannot be done with quantum information. The term quantum information theory is also used, but it fails to encompass experimental research, and can be confused with a subfield of quantum information science that addresses the processing of quantum information. Scientific and engineering studies To understand quantum teleportation, quantum entanglement and the manufacturing of quantum computer hardware requires a thorough understanding of quantum physics and engineering. Since 2010s, there has been remarkable progress in manufacturing quantum computers, with companies like Google and IBM investing heavily ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Cryptography
Quantum cryptography is the science of exploiting quantum mechanical properties to perform cryptographic tasks. The best known example of quantum cryptography is quantum key distribution which offers an information-theoretically secure solution to the key exchange problem. The advantage of quantum cryptography lies in the fact that it allows the completion of various cryptographic tasks that are proven or conjectured to be impossible using only classical (i.e. non-quantum) communication. For example, it is impossible to copy data encoded in a quantum state. If one attempts to read the encoded data, the quantum state will be changed due to wave function collapse (no-cloning theorem). This could be used to detect eavesdropping in quantum key distribution (QKD). History In the early 1970s, Stephen Wiesner, then at Columbia University in New York, introduced the concept of quantum conjugate coding. His seminal paper titled "Conjugate Coding" was rejected by the IEEE Informati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]