HOME
*



picture info

Fourier Inversion
In mathematics, the Fourier inversion theorem says that for many types of functions it is possible to recover a function from its Fourier transform. Intuitively it may be viewed as the statement that if we know all frequency and phase information about a wave then we may reconstruct the original wave precisely. The theorem says that if we have a function f:\R \to \Complex satisfying certain conditions, and we use the convention for the Fourier transform that :(\mathcalf)(\xi):=\int_ e^ \, f(y)\,dy, then :f(x)=\int_ e^ \, (\mathcalf)(\xi)\,d\xi. In other words, the theorem says that :f(x)=\iint_ e^ \, f(y)\,dy\,d\xi. This last equation is called the Fourier integral theorem. Another way to state the theorem is that if R is the flip operator i.e. (Rf)(x) := f(-x), then :\mathcal^=\mathcalR=R\mathcal. The theorem holds if both f and its Fourier transform are absolutely integrable (in the Lebesgue sense) and f is continuous at the point x. However, even under more general ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and mathematical analysis, analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of mathematical object, abstract objects and the use of pure reason to proof (mathematics), prove them. These objects consist of either abstraction (mathematics), abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of inference rule, deductive rules to already established results. These results include previously proved theorems, axioms ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fourier Transform
A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed, which will output a function depending on temporal frequency or spatial frequency respectively. That process is also called ''analysis''. An example application would be decomposing the waveform of a musical chord into terms of the intensity of its constituent pitches. The term ''Fourier transform'' refers to both the frequency domain representation and the mathematical operation that associates the frequency domain representation to a function of space or time. The Fourier transform of a function is a complex-valued function representing the complex sinusoids that comprise the original function. For each frequency, the magnitude ( absolute value) of the complex value represents the amplitude of a constituent complex sinusoid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dominated Convergence Theorem
In measure theory, Lebesgue's dominated convergence theorem provides sufficient conditions under which almost everywhere convergence of a sequence of functions implies convergence in the ''L''1 norm. Its power and utility are two of the primary theoretical advantages of Lebesgue integration over Riemann integration. In addition to its frequent appearance in mathematical analysis and partial differential equations, it is widely used in probability theory, since it gives a sufficient condition for the convergence of expected values of random variables. Statement Lebesgue's dominated convergence theorem. Let (f_n) be a sequence of complex-valued measurable functions on a measure space . Suppose that the sequence converges pointwise to a function f and is dominated by some integrable function g in the sense that : , f_n(x), \le g(x) for all numbers ''n'' in the index set of the sequence and all points x\in S. Then ''f'' is integrable (in the Lebesgue sense) and : \lim_ \int_S , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nascent Delta Function
In mathematics, the Dirac delta distribution ( distribution), also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. The current understanding of the unit impulse is as a linear functional that maps every continuous function (e.g., f(x)) to its value at zero of its domain (f(0)), or as the weak limit of a sequence of bump functions (e.g., \delta(x) = \lim_ \frace^), which are zero over most of the real line, with a tall spike at the origin. Bump functions are thus sometimes called "approximate" or "nascent" delta distributions. The delta function was introduced by physicist Paul Dirac as a tool for the normalization of state vectors. It also has uses in probability theory and signal processing. Its validity was disputed until Laurent Schwartz developed the theory of distributions where it is defined as a linear form acting on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convolution
In mathematics (in particular, functional analysis), convolution is a mathematical operation on two functions ( and ) that produces a third function (f*g) that expresses how the shape of one is modified by the other. The term ''convolution'' refers to both the result function and to the process of computing it. It is defined as the integral of the product of the two functions after one is reflected about the y-axis and shifted. The choice of which function is reflected and shifted before the integral does not change the integral result (see commutativity). The integral is evaluated for all values of shift, producing the convolution function. Some features of convolution are similar to cross-correlation: for real-valued functions, of a continuous or discrete variable, convolution (f*g) differs from cross-correlation (f \star g) only in that either or is reflected about the y-axis in convolution; thus it is a cross-correlation of and , or and . For complex-valued fun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fubini's Theorem
In mathematical analysis Fubini's theorem is a result that gives conditions under which it is possible to compute a double integral by using an iterated integral, introduced by Guido Fubini in 1907. One may switch the order of integration if the double integral yields a finite answer when the integrand is replaced by its absolute value. \, \iint\limits_ f(x,y)\,\text(x,y) = \int_X\left(\int_Y f(x,y)\,\texty\right)\textx=\int_Y\left(\int_X f(x,y) \, \textx \right) \texty \qquad \text \qquad \iint\limits_ , f(x,y), \,\text(x,y) <+\infty. Fubini's theorem implies that two iterated integrals are equal to the corresponding double integral across its integrands. Tonelli's theorem, introduced by in 1909, is similar, but applies to a non-negative measurable function rather than one integrable over their domains. A related theorem is o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riemann–Lebesgue Lemma
In mathematics, the Riemann–Lebesgue lemma, named after Bernhard Riemann and Henri Lebesgue, states that the Fourier transform or Laplace transform of an ''L''1 function vanishes at infinity. It is of importance in harmonic analysis and asymptotic analysis. Statement Let f\in L^1(\R^n) be an integrable function, i.e. f\colon\R^n \rightarrow \C is a measurable function In mathematics and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable. This is in ... such that :\, f\, _ = \int_ , f(x), \mathrmx 0, pick a compactly supported continuous function g such that \, f-g\, _ \leq \varepsilon. Then : \limsup_ , \hat(\xi), \leq \limsup_ \left, \int (f(x)-g(x))\mathrm^ \, \mathrmx\ + \limsup_ \left, \int g(x)\mathrm^ \, \mathrmx\ \leq \varepsilon + 0 = \varepsilon. Because this holds for any \varepsilon > 0, it foll ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Convolution Theorem
In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the pointwise product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain) equals point-wise multiplication in the other domain (e.g., frequency domain). Other versions of the convolution theorem are applicable to various Fourier-related transforms. Functions of a continuous variable Consider two functions g(x) and h(x) with Fourier transforms G and H: \begin G(f) &\triangleq \mathcal\(f) = \int_^g(x) e^ \, dx, \quad f \in \mathbb\\ H(f) &\triangleq \mathcal\(f) = \int_^h(x) e^ \, dx, \quad f \in \mathbb \end where \mathcal denotes the Fourier transform operator. The transform may be normalized in other ways, in which case constant scaling factors (typically 2\pi or \sqrt) will appear in the convolution theorem below. The convolution of g and h is defined by: r(x) = \(x) \triangleq \int_^ g( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative Diagram Illustrating Problem Solving Via The Fourier Transform
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of the property that says something like or , the property can also be used in more advanced settings. The name is needed because there are operations, such as division and subtraction, that do not have it (for example, ); such operations are ''not'' commutative, and so are referred to as ''noncommutative operations''. The idea that simple operations, such as the multiplication and addition of numbers, are commutative was for many years implicitly assumed. Thus, this property was not named until the 19th century, when mathematics started to become formalized. A similar property exists for binary relations; a binary relation is said to be symmetric if the relation applies regardless of the order of its operands; for example, equality is sy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convergence Of Fourier Series
In mathematics, the question of whether the Fourier series of a periodic function converges to a given function is researched by a field known as classical harmonic analysis, a branch of pure mathematics. Convergence is not necessarily given in the general case, and certain criteria must be met for convergence to occur. Determination of convergence requires the comprehension of pointwise convergence, uniform convergence, absolute convergence, ''L''''p'' spaces, summability methods and the Cesàro mean. Preliminaries Consider ''f'' an integrable function on the interval . For such an ''f'' the Fourier coefficients \widehat(n) are defined by the formula :\widehat(n)=\frac\int_0^f(t)e^\,\mathrmt, \quad n \in \Z. It is common to describe the connection between ''f'' and its Fourier series by :f \sim \sum_n \widehat(n) e^. The notation ~ here means that the sum represents the function in some sense. To investigate this more carefully, the partial sums must be defined: :S_N(f;t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Carleson's Theorem
Carleson's theorem is a fundamental result in mathematical analysis establishing the pointwise ( Lebesgue) almost everywhere convergence of Fourier series of functions, proved by . The name is also often used to refer to the extension of the result by to functions for (also known as the ''Carleson–Hunt theorem'') and the analogous results for pointwise almost everywhere convergence of Fourier integrals, which can be shown to be equivalent by transference methods. Statement of the theorem The result, in the form of its extension by Hunt, can be formally stated as follows: The analogous result for Fourier integrals can be formally stated as follows: History A fundamental question about Fourier series, asked by Fourier himself at the beginning of the 19th century, is whether the Fourier series of a continuous function converges pointwise to the function. By strengthening the continuity assumption slightly one can easily show that the Fourier series converges everywh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lp Space
In mathematics, the spaces are function spaces defined using a natural generalization of the -norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue , although according to the Bourbaki group they were first introduced by Frigyes Riesz . spaces form an important class of Banach spaces in functional analysis, and of topological vector spaces. Because of their key role in the mathematical analysis of measure and probability spaces, Lebesgue spaces are used also in the theoretical discussion of problems in physics, statistics, economics, finance, engineering, and other disciplines. Applications Statistics In statistics, measures of central tendency and statistical dispersion, such as the mean, median, and standard deviation, are defined in terms of metrics, and measures of central tendency can be characterized as solutions to variational problems. In penalized regression, "L1 penalty" and "L2 penalty" refer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]