Fourth Power
In arithmetic and algebra, the fourth power of a number ''n'' is the result of multiplying four instances of ''n'' together. So: :''n''4 = ''n'' Ă— ''n'' Ă— ''n'' Ă— ''n'' Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares. Some people refer to ''n''4 as n '' tesseracted'', '' hypercubed'', '' zenzizenzic'', '' biquadrate'' or ''supercubed'' instead of “to the power of 4”. The sequence of fourth powers of integers, known as biquadrates or tesseractic numbers, is: :0, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, 14641, 20736, 28561, 38416, 50625, 65536, 83521, 104976, 130321, 160000, 194481, 234256, 279841, 331776, 390625, 456976, 531441, 614656, 707281, 810000, ... . Properties The last digit of a fourth power in decimal can only be 0, 1, 5, or 6. In hexadecimal the last nonzero digit of a fourth power is always 1.An odd fourth power is the square of an odd square number. All odd squares are congruent to 1 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Arithmetic
Arithmetic is an elementary branch of mathematics that deals with numerical operations like addition, subtraction, multiplication, and division. In a wider sense, it also includes exponentiation, extraction of roots, and taking logarithms. Arithmetic systems can be distinguished based on the type of numbers they operate on. Integer arithmetic is about calculations with positive and negative integers. Rational number arithmetic involves operations on fractions of integers. Real number arithmetic is about calculations with real numbers, which include both rational and irrational numbers. Another distinction is based on the numeral system employed to perform calculations. Decimal arithmetic is the most common. It uses the basic numerals from 0 to 9 and their combinations to express numbers. Binary arithmetic, by contrast, is used by most computers and represents numbers as combinations of the basic numerals 0 and 1. Computer arithmetic deals with the specificities of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fermat's Right Triangle Theorem
Fermat's right triangle theorem is a non-existence mathematical proof, proof in number theory, published in 1670 among the works of Pierre de Fermat, soon after his death. It is the only complete proof given by Fermat. It has many equivalent formulations, one of which was stated (but not proved) in 1225 by Fibonacci. In its geometry, geometric forms, it states: *A right triangle in the Euclidean plane for which all three side lengths are rational numbers cannot have an area that is the square (algebra), square of a rational number. The area of a rational-sided right triangle is called a congruent number, so no congruent number can be square. *A right triangle and a square with equal areas cannot have all sides Commensurability (mathematics), commensurate with each other. *There do not exist two Pythagorean triple, integer-sided right triangles in which the two legs of one triangle are the leg and hypotenuse of the other triangle. More abstractly, as a result about Diophantine equa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fifth Power (algebra)
In arithmetic and algebra, the fifth power or sursolid of a number ''n'' is the result of multiplying five instances of ''n'' together: :. Fifth powers are also formed by multiplying a number by its fourth power, or the square of a number by its cube. The sequence of fifth powers of integers is: :0, 1, 32, 243, 1024, 3125, 7776, 16807, 32768, 59049, 100000, 161051, 248832, 371293, 537824, 759375, 1048576, 1419857, 1889568, 2476099, 3200000, 4084101, 5153632, 6436343, 7962624, 9765625, ... Properties For any integer ''n'', the last decimal digit of ''n''5 is the same as the last (decimal) digit of ''n'', i.e. : n \equiv n^5\pmod By the Abel–Ruffini theorem, there is no general algebraic formula (formula expressed in terms of radical expressions) for the solution of polynomial equations containing a fifth power of the unknown as their highest power. This is the lowest power for which this is true. See quintic equation, sextic equation, and septic equation. Along with the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exponentiation
In mathematics, exponentiation, denoted , is an operation (mathematics), operation involving two numbers: the ''base'', , and the ''exponent'' or ''power'', . When is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, is the product (mathematics), product of multiplying bases: b^n = \underbrace_.In particular, b^1=b. The exponent is usually shown as a superscript to the right of the base as or in computer code as b^n. This binary operation is often read as " to the power "; it may also be referred to as " raised to the th power", "the th power of ", or, most briefly, " to the ". The above definition of b^n immediately implies several properties, in particular the multiplication rule:There are three common notations for multiplication: x\times y is most commonly used for explicit numbers and at a very elementary level; xy is most common when variable (mathematics), variables are used; x\cdot y is used for emphasizing that one ta ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cube (algebra)
In arithmetic and algebra, the cube of a number is its third exponentiation, power, that is, the result of multiplying three instances of together. The cube of a number is denoted , using a superscript 3, for example . The cube Mathematical operation, operation can also be defined for any other expression (mathematics), mathematical expression, for example . The cube is also the number multiplied by its square (algebra), square: :. The ''cube function'' is the function (mathematics), function (often denoted ) that maps a number to its cube. It is an odd function, as :. The volume of a Cube (geometry), geometric cube is the cube of its side length, giving rise to the name. The Inverse function, inverse operation that consists of finding a number whose cube is is called extracting the cube root of . It determines the side of the cube of a given volume. It is also raised to the one-third power. The graph of a function, graph of the cube function is known as the cubic para ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Square (algebra)
In mathematics, a square is the result of multiplying a number by itself. The verb "to square" is used to denote this operation. Squaring is the same as raising to the power 2, and is denoted by a superscript 2; for instance, the square of 3 may be written as 32, which is the number 9. In some cases when superscripts are not available, as for instance in programming languages or plain text files, the notations ''x''^2 ( caret) or ''x''**2 may be used in place of ''x''2. The adjective which corresponds to squaring is '' quadratic''. The square of an integer may also be called a '' square number'' or a ''perfect square''. In algebra, the operation of squaring is often generalized to polynomials, other expressions, or values in systems of mathematical values other than the numbers. For instance, the square of the linear polynomial is the quadratic polynomial . One of the important properties of squaring, for numbers as well as in many other mathematical systems, is that ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nth Root
In mathematics, an th root of a number is a number which, when raised to the power of , yields : r^n = \underbrace_ = x. The positive integer is called the ''index'' or ''degree'', and the number of which the root is taken is the ''radicand.'' A root of degree 2 is called a ''square root'' and a root of degree 3, a '' cube root''. Roots of higher degree are referred by using ordinal numbers, as in ''fourth root'', ''twentieth root'', etc. The computation of an th root is a root extraction. For example, is a square root of , since , and is also a square root of , since . The th root of is written as \sqrt /math> using the radical symbol \sqrt. The square root is usually written as , with the degree omitted. Taking the th root of a number, for fixed , is the inverse of raising a number to the th power, and can be written as a fractional exponent: \sqrt = x^. For a positive real number , \sqrt denotes the positive square root of and \sqrt /math> denotes the pos ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abel–Ruffini Theorem
In mathematics, the Abel–Ruffini theorem (also known as Abel's impossibility theorem) states that there is no solution in radicals to general polynomial equations of degree five or higher with arbitrary coefficients. Here, ''general'' means that the coefficients of the equation are viewed and manipulated as indeterminates. The theorem is named after Paolo Ruffini, who made an incomplete proof in 1799 (which was refined and completed in 1813 and accepted by Cauchy) and Niels Henrik Abel, who provided a proof in 1824. ''Abel–Ruffini theorem'' refers also to the slightly stronger result that there are equations of degree five and higher that cannot be solved by radicals. This does not follow from Abel's statement of the theorem, but is a corollary of his proof, as his proof is based on the fact that some polynomials in the coefficients of the equation are not the zero polynomial. This improved statement follows directly from . Galois theory implies also that :x^5-x-1=0 is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polynomial
In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative integer powers, and has a finite number of terms. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problem (mathematics education), word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; and they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Degree Of A Polynomial
In mathematics, the degree of a polynomial is the highest of the degrees of the polynomial's monomials (individual terms) with non-zero coefficients. The degree of a term is the sum of the exponents of the variables that appear in it, and thus is a non-negative integer. For a univariate polynomial, the degree of the polynomial is simply the highest exponent occurring in the polynomial. The term order has been used as a synonym of ''degree'' but, nowadays, may refer to several other concepts (see Order of a polynomial (other)). For example, the polynomial 7x^2y^3 + 4x - 9, which can also be written as 7x^2y^3 + 4x^1y^0 - 9x^0y^0, has three terms. The first term has a degree of 5 (the sum of the powers 2 and 3), the second term has a degree of 1, and the last term has a degree of 0. Therefore, the polynomial has a degree of 5, which is the highest degree of any term. To determine the degree of a polynomial that is not in standard form, such as (x+1)^2 - (x-1)^2, one c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fourth-degree Equation
In algebra, a quartic function is a function (mathematics), function of the form :f(x)=ax^4+bx^3+cx^2+dx+e, where ''a'' is nonzero, which is defined by a polynomial of Degree of a polynomial, degree four, called a quartic polynomial. A ''quartic equation'', or equation of the fourth degree, is an equation that equates a quartic polynomial to zero, of the form :ax^4+bx^3+cx^2+dx+e=0 , where . The derivative of a quartic function is a cubic function. Sometimes the term biquadratic is used instead of ''quartic'', but, usually, biquadratic function refers to a quadratic function of a square (or, equivalently, to the function defined by a quartic polynomial without terms of odd degree), having the form :f(x)=ax^4+cx^2+e. Since a quartic function is defined by a polynomial of even degree, it has the same infinite limit when the argument goes to positive or negative infinity. If ''a'' is positive, then the function increases to positive infinity at both ends; and thus the function ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Counterexample
A counterexample is any exception to a generalization. In logic a counterexample disproves the generalization, and does so rigorously in the fields of mathematics and philosophy. For example, the fact that "student John Smith is not lazy" is a counterexample to the generalization "students are lazy", and both a counterexample to, and disproof of, the universal quantification "all students are lazy." In mathematics In mathematics, counterexamples are often used to prove the boundaries of possible theorems. By using counterexamples to show that certain conjectures are false, mathematical researchers can then avoid going down blind alleys and learn to modify conjectures to produce provable theorems. It is sometimes said that mathematical development consists primarily in finding (and proving) theorems and counterexamples. Rectangle example Suppose that a mathematician is studying geometry and shapes, and she wishes to prove certain theorems about them. She conjectures that "All re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |