Foster Graph
In the mathematical field of graph theory, the Foster graph is a bipartite 3-regular graph with 90 vertices and 135 edges. The Foster graph is Hamiltonian and has chromatic number 2, chromatic index 3, radius 8, diameter 8 and girth 10. It is also a 3- vertex-connected and 3- edge-connected graph. It has queue number 2 and the upper bound on the book thickness is 4. All the cubic distance-regular graphs are known. The Foster graph is one of the 13 such graphs. It is the unique distance-transitive graph with intersection array . It can be constructed as the incidence graph of the partial linear space which is the unique triple cover with no 8-gons of the generalized quadrangle ''GQ''(2,2). It is named after R. M. Foster, whose ''Foster census'' of cubic symmetric graphs included this graph. The bipartite half of the Foster graph is a distance-regular graph and a locally linear graph. It is one of a finite number of such graphs with degree six. Algebraic properties The a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cubic Graph
In the mathematical field of graph theory, a cubic graph is a graph in which all vertices have degree three. In other words, a cubic graph is a 3-regular graph. Cubic graphs are also called trivalent graphs. A bicubic graph is a cubic bipartite graph. Symmetry In 1932, Ronald M. Foster began collecting examples of cubic symmetric graphs, forming the start of the Foster census.. Many well-known individual graphs are cubic and symmetric, including the utility graph, the Petersen graph, the Heawood graph, the Möbius–Kantor graph, the Pappus graph, the Desargues graph, the Nauru graph, the Coxeter graph, the Tutte–Coxeter graph, the Dyck graph, the Foster graph and the Biggs–Smith graph. W. T. Tutte classified the symmetric cubic graphs by the smallest integer number ''s'' such that each two oriented paths of length ''s'' can be mapped to each other by exactly one symmetry of the graph. He showed that ''s'' is at most 5, and provided examples of graphs with ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Characteristic Polynomial
In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix among its coefficients. The characteristic polynomial of an endomorphism of a finite-dimensional vector space is the characteristic polynomial of the matrix of that endomorphism over any base (that is, the characteristic polynomial does not depend on the choice of a basis). The characteristic equation, also known as the determinantal equation, is the equation obtained by equating the characteristic polynomial to zero. In spectral graph theory, the characteristic polynomial of a graph is the characteristic polynomial of its adjacency matrix. Motivation In linear algebra, eigenvalues and eigenvectors play a fundamental role, since, given a linear transformation, an eigenvector is a vector whose direction is not changed by the transformation, and the corresponding ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Marston Conder
Marston Donald Edward Conder (born 9 September 1955) is a New Zealand mathematician, a Distinguished Professor of Mathematics at Auckland University,Staff directory listing entry Auckland U. Mathematics, retrieved 22 January 2013. and the former co-director of the New Zealand Institute of Mathematics and its Applications. His main research interests are in combinatorial group theory, graph theory, and their connections with each other. Education and career Conder was born in[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Locally Linear Graph
In graph theory, a locally linear graph is an undirected graph in which every edge belongs to exactly one triangle. Equivalently, for each vertex of the graph, its neighbors are each adjacent to exactly one other neighbor, so the neighbors can be paired up into an induced matching. Locally linear graphs have also been called locally matched graphs. Many constructions for locally linear graphs are known. Examples of locally linear graphs include the triangular cactus graphs, the line graphs of 3-regular triangle-free graphs, and the Cartesian products of smaller locally linear graphs. Certain Kneser graphs, and certain strongly regular graphs, are also locally linear. The question of how many edges locally linear graphs can have is one of the formulations of the Ruzsa–Szemerédi problem. Although dense graphs can have a number of edges proportional to the square of the number of vertices, locally linear graphs have a smaller number of edges, falling short of the square by a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bipartite Half
In graph theory, the bipartite half or half-square of a bipartite graph is a graph whose vertex set is one of the two sides of the bipartition (without loss of generality, ) and in which there is an edge for each pair of vertices in that are at distance two from each other in . That is, in a more compact notation, the bipartite half is where the superscript 2 denotes the square of a graph and the square brackets denote an induced subgraph. Examples For instance, the bipartite half of the complete bipartite graph is the complete graph and the bipartite half of the hypercube graph is the halved cube graph. When is a distance-regular graph, its two bipartite halves are both distance-regular. For instance, the halved Foster graph is one of finitely many degree-6 distance-regular locally linear graphs. Representation and hardness Every graph is the bipartite half of another graph, formed by subdividing the edges of into two-edge paths. More generally, a representation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Foster Census In the mathematical field of graph theory, a graph is symmetric (or arc-transitive) if, given any two pairs of adjacent vertices and of , there is an automorphism :f : V(G) \rightarrow V(G) such that :f(u_1) = u_2 and f(v_1) = v_2. In other words, a graph is symmetric if its automorphism group acts transitively on ordered pairs of adjacent vertices (that is, upon edges considered as having a direction). Such a graph is sometimes also called -transitive or flag-transitive. By definition (ignoring and ), a symmetric graph without isolated vertices must also be vertex-transitive. Since the definition above maps one edge to another, a symmetric graph must also be edge-transitive. However, an edge-transitive graph need not be symmetric, since might map to , but not to . Star graphs are |