HOME





Fondements De La Géometrie Algébrique
''Fondements de la Géometrie Algébrique'' (''FGA'') is a book that collected together seminar notes of Alexander Grothendieck. It is an important source for his pioneering work on scheme theory, which laid foundations for algebraic geometry in its modern technical developments. The title is a translation of the title of André Weil's book ''Foundations of Algebraic Geometry.'' It contained material on descent theory, and existence theorems including that for the Hilbert scheme. The ''Technique de descente et théorèmes d'existence en géometrie algébrique'' is one series of seminars within ''FGA''. Like the bulk of Grothendieck's work of the IHÉS period, duplicated notes were circulated, but the publication was not as a conventional book. Contents These are Séminaire Bourbaki notes, by number, from the years 1957 to 1962.Fondements de la géométrie algébrique. Commentaires éminaire Bourbaki, t. 14, 1961/62, ComplémentThéorème de dualité pour les faisceaux algébr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alexander Grothendieck
Alexander Grothendieck, later Alexandre Grothendieck in French (; ; ; 28 March 1928 â€“ 13 November 2014), was a German-born French mathematician who became the leading figure in the creation of modern algebraic geometry. His research extended the scope of the field and added elements of commutative algebra, homological algebra, sheaf theory, and category theory to its foundations, while his so-called Grothendieck's relative point of view, "relative" perspective led to revolutionary advances in many areas of pure mathematics. He is considered by many to be the greatest mathematician of the twentieth century. Grothendieck began his productive and public career as a mathematician in 1949. In 1958, he was appointed a research professor at the Institut des Hautes Études Scientifiques, Institut des hautes études scientifiques (IHÉS) and remained there until 1970, when, driven by personal and political convictions, he left following a dispute over military funding. He receive ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scheme Theory
In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations and define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise '' Éléments de géométrie algébrique'' (EGA); one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne). Strongly based on commutative algebra, scheme theory allows a systematic use of methods of topology and homological algebra. Scheme theory also unifies algebraic geometry with much of number theory, which eventually led to Wiles's proof of Fermat's Last Theorem. Schemes elaborate the fundamental idea that an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects. The fundamental objects of study in algebraic geometry are algebraic variety, algebraic varieties, which are geometric manifestations of solution set, solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are line (geometry), lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscate of Bernoulli, lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular point of a curve, singular p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


André Weil
André Weil (; ; 6 May 1906 – 6 August 1998) was a French mathematician, known for his foundational work in number theory and algebraic geometry. He was one of the most influential mathematicians of the twentieth century. His influence is due both to his original contributions to a remarkably broad spectrum of mathematical theories, and to the mark he left on mathematical practice and style, through some of his own works as well as through the Bourbaki group, of which he was one of the principal founders. Life André Weil was born in Paris to agnostic Alsatian Jewish parents who fled the annexation of Alsace-Lorraine by the German Empire after the Franco-Prussian War in 1870–71. Simone Weil, who would later become a famous philosopher, was Weil's younger sister and only sibling. He studied in Paris, Rome and Göttingen and received his doctorate in 1928. While in Germany, Weil befriended Carl Ludwig Siegel. Starting in 1930, he spent two academic years at Aligarh Mu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Foundations Of Algebraic Geometry
''Foundations of Algebraic Geometry'' is a book by that develops algebraic geometry over field (mathematics), fields of any characteristic (algebra), characteristic. In particular it gives a careful treatment of intersection theory by defining the local intersection multiplicity of two Algebraic variety, subvarieties. Weil was motivated by the need for a rigorous theory of correspondences on algebraic curves in positive characteristic, which he used in his proof of the Riemann hypothesis for curves over finite fields. Weil introduced Abstract variety, abstract rather than Projective variety, projective varieties partly so that he could construct the Jacobian of a curve. (It was not known at the time that Jacobians are always projective varieties.) It was some time before anyone found any examples of complete variety, complete abstract varieties that are not projective. In the 1950s Weil's work was one of several competing attempts to provide satisfactory foundations for algeb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Descent Theory
In mathematics, the idea of descent extends the intuitive idea of 'gluing' in topology. Since the topologists' glue is the use of equivalence relations on topological spaces, the theory starts with some ideas on identification. Descent of vector bundles The case of the construction of vector bundles from data on a disjoint union of topological spaces is a straightforward place to start. Suppose is a topological space covered by open sets . Let be the disjoint union of the , so that there is a natural mapping :p: Y \rightarrow X. We think of as 'above' , with the projection 'down' onto . With this language, ''descent'' implies a vector bundle on (so, a bundle given on each ), and our concern is to 'glue' those bundles , to make a single bundle on . What we mean is that should, when restricted to , give back , up to a bundle isomorphism. The data needed is then this: on each overlap :X_, intersection of and , we'll require mappings :f_: V_i \rightarrow V_j to use to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hilbert Scheme
In algebraic geometry, a branch of mathematics, a Hilbert scheme is a scheme that is the parameter space for the closed subschemes of some projective space (or a more general projective scheme), refining the Chow variety. The Hilbert scheme is a disjoint union of projective subschemes corresponding to Hilbert polynomials. The basic theory of Hilbert schemes was developed by . Hironaka's example shows that non-projective varieties need not have Hilbert schemes. Hilbert scheme of projective space The Hilbert scheme \mathbf(n) of \mathbb^n classifies closed subschemes of projective space in the following sense: For any locally Noetherian scheme , the set of -valued points :\operatorname(S, \mathbf(n)) of the Hilbert scheme is naturally isomorphic to the set of closed subschemes of \mathbb^n \times S that are flat over . The closed subschemes of \mathbb^n \times S that are flat over can informally be thought of as the families of subschemes of projective space parameterized b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coherent Duality
In mathematics, coherent duality is any of a number of generalisations of Serre duality, applying to coherent sheaves, in algebraic geometry and complex manifold theory, as well as some aspects of commutative algebra that are part of the 'local' theory. The historical roots of the theory lie in the idea of the adjoint linear system of a linear system of divisors in classical algebraic geometry. This was re-expressed, with the advent of sheaf theory, in a way that made an analogy with Poincaré duality more apparent. Then according to a general principle, Grothendieck's relative point of view, the theory of Jean-Pierre Serre was extended to a proper morphism; Serre duality was recovered as the case of the morphism of a non-singular projective variety (or complete variety) to a point. The resulting theory is now sometimes called Serre–Grothendieck–Verdier duality, and is a basic tool in algebraic geometry. A treatment of this theory, ''Residues and Duality'' (1966) by Robin Hart ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Formal Geometry
In mathematics, specifically in algebraic geometry, a formal scheme is a type of space which includes data about its surroundings. Unlike an ordinary scheme, a formal scheme includes infinitesimal data that, in effect, points in a direction off of the scheme. For this reason, formal schemes frequently appear in topics such as deformation theory. But the concept is also used to prove a theorem such as the theorem on formal functions, which is used to deduce theorems of interest for usual schemes. A locally Noetherian scheme is a locally Noetherian formal scheme in the canonical way: the formal completion along itself. In other words, the category of locally Noetherian formal schemes contains all locally Noetherian schemes. Formal schemes were motivated by and generalize Zariski's theory of formal holomorphic functions. Algebraic geometry based on formal schemes is called formal algebraic geometry. Definition Formal schemes are usually defined only in the Noetherian case. While ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Éléments De Géométrie Algébrique
The (''EGA''; from French: "Elements of Algebraic Geometry") by Alexander Grothendieck (assisted by Jean Dieudonné) is a rigorous treatise on algebraic geometry that was published (in eight parts or fascicles) from 1960 through 1967 by the . In it, Grothendieck established systematic foundations of algebraic geometry, building upon the concept of schemes, which he defined. The work is now considered the foundation and basic reference of modern algebraic geometry. Editions Initially thirteen chapters were planned, but only the first four (making a total of approximately 1500 pages) were published. Much of the material which would have been found in the following chapters can be found, in a less polished form, in the '' Séminaire de géométrie algébrique'' (known as ''SGA''). Indeed, as explained by Grothendieck in the preface of the published version of ''SGA'', by 1970 it had become clear that incorporating all of the planned material in ''EGA'' would require significan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]