HOME



picture info

Exhaust Velocity
Specific impulse (usually abbreviated ) is a measure of how efficiently a reaction mass engine, such as a rocket using propellant or a jet engine using fuel, generates thrust. In general, this is a ratio of the '' impulse'', i.e. change in momentum, ''per mass'' of propellant. This is equivalent to "thrust per massflow". The resulting unit is equivalent to velocity. If the engine expels mass at a constant exhaust velocity v_e then the thrust will be \mathbf = v_e \frac . If we integrate over time to get the total change in momentum, and then divide by the mass, we see that the specific impulse is equal to the exhaust velocity v_e . In practice, the specific impulse is usually lower than the actual physical exhaust velocity inefficiencies in the rocket, and thus corresponds to an "effective" exhaust velocity. That is, the specific impulse I_ in units of velocity *is defined by* : \mathbf = I_ \frac , where \mathbf is the average thrust. The practical meaning of the me ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Reaction Mass
Working mass, also referred to as reaction mass, is a mass against which a system operates in order to produce acceleration. In the case of a chemical rocket, for example, the reaction mass is the Product (chemistry), product of the burned fuel shot backwards to provide propulsion. All acceleration requires an exchange of momentum, which can be thought of as the "unit of movement". Momentum is related to mass and velocity, as given by the formula ''P = mv,'' where ''P'' is the momentum, ''m'' the mass, and ''v'' the velocity. The velocity of a body is easily changeable, but in most cases the mass is not, which makes it important. Rockets and rocket-like reaction engines In rockets, the total velocity change can be calculated (using the Tsiolkovsky rocket equation) as follows: \Delta\,v = u\,\ln\left(\frac\right) Where: * ''v'' = ship velocity. * ''u'' = exhaust velocity. * ''M'' = ship mass, not including the working mass. * ''m'' = total mass ejected from the ship (working mass ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

RP-1
RP-1 (Rocket Propellant-1 or Refined Petroleum-1) and similar fuels like RG-1 and T-1 are highly refined kerosene formulations used as rocket fuel. Liquid-fueled rockets that use RP-1 as fuel are known as kerolox rockets. In their engines, RP-1 is Spray nozzle, atomized, mixed with liquid oxygen (LOX), and ignited to produce thrust. Developed in the 1950s, RP-1 is outwardly similar to other kerosene-based fuels like Jet A and JP-8 used in turbine engines but is manufactured to stricter standards. While RP-1 is widely used globally, the primary rocket kerosene formulations in Russia and other former Soviet countries are RG-1 and T-1, which have slightly higher densities. Compared to other rocket fuels, RP-1 provides several advantages with a few tradeoffs. Compared to liquid hydrogen, it offers a lower specific impulse, but can be stored at ambient temperatures, has a lower explosion risk, and although its specific energy is lower, its higher density results in greater energy de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Customary Units
United States customary units form a system of Units of measurement, measurement units commonly used in the United States and most Territories of the United States, U.S. territories since being standardized and adopted in 1832. The United States customary system developed from English units that were in use in the British Empire before the U.S. became an independent country. The United Kingdom's system of measures evolved by 1824 to create the imperial system (with imperial units), which was officially adopted in 1826, changing the definitions of some of its units. Consequently, while many U.S. units are essentially similar to their imperial counterparts, there are noticeable comparison of the imperial and US customary measurement systems, differences between the systems. The majority of U.S. customary units were redefined in terms of the metre, meter and kilogram with the Mendenhall Order of 1893 and, in practice, for many years before.Thomas Corwin Mendenhall, T.C. Mendenhall ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Imperial Units
The imperial system of units, imperial system or imperial units (also known as British Imperial or Exchequer Standards of 1826) is the system of units first defined in the British Weights and Measures Act 1824 and continued to be developed through a series of Weights and Measures Acts and amendments. The imperial system developed from earlier English units as did the Comparison of the imperial and US customary measurement systems, related but differing system of United States customary units, customary units of the United States. The imperial units replaced the Winchester measure, Winchester Standards, which were in effect from 1588 to 1825. The system came into official use across the British Empire in 1826. By the late 20th century, most nations of the former empire had metrication, officially adopted the metric system as their main system of measurement, but imperial units are still used alongside metric units in the United Kingdom and in some other parts of the former empi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

International System Of Units
The International System of Units, internationally known by the abbreviation SI (from French ), is the modern form of the metric system and the world's most widely used system of measurement. It is the only system of measurement with official status in nearly every country in the world, employed in science, technology, industry, and everyday commerce. The SI system is coordinated by the International Bureau of Weights and Measures, which is abbreviated BIPM from . The SI comprises a coherent system of units of measurement starting with seven base units, which are the second (symbol s, the unit of time), metre (m, length), kilogram (kg, mass), ampere (A, electric current), kelvin (K, thermodynamic temperature), mole (mol, amount of substance), and candela (cd, luminous intensity). The system can accommodate coherent units for an unlimited number of additional quantities. These are called coherent derived units, which can always be represented as products of powers of the base u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ingenuity (helicopter)
''Ingenuity'', nicknamed ''Ginny'', is an autonomous NASA helicopter that operated on Mars from 2021 to 2024 as part of the Mars 2020 mission. ''Ingenuity'' made its first flight on 19 April 2021, demonstrating that flight is possible in the extremely thin atmosphere of Mars, and becoming the first aircraft to conduct a powered and controlled extra-terrestrial flight. It was designed by NASA's Jet Propulsion Laboratory (JPL) in collaboration with AeroVironment, NASA's Ames Research Center and Langley Research Center with some components supplied by Lockheed Martin Space, Qualcomm, and Rocket Lab, SolAero. ''Ingenuity'' was delivered to Mars on 18 February 2021, attached to the underside of the Perseverance (rover), ''Perseverance'' rover, which landed at Octavia E. Butler Landing near the western rim of the Jezero (crater), Jezero crater. Because radio signals take between five and 20 minutes to travel between Earth and Mars, depending on the planets' positions, it could not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Weight
In science and engineering, the weight of an object is a quantity associated with the gravitational force exerted on the object by other objects in its environment, although there is some variation and debate as to the exact definition. Some standard textbooks define weight as a Euclidean vector, vector quantity, the gravitational force acting on the object. Others define weight as a scalar quantity, the magnitude of the gravitational force. Yet others define it as the magnitude of the reaction (physics), reaction force exerted on a body by mechanisms that counteract the effects of gravity: the weight is the quantity that is measured by, for example, a spring scale. Thus, in a state of free fall, the weight would be zero. In this sense of weight, terrestrial objects can be weightless: so if one ignores Drag (physics), air resistance, one could say the legendary apple falling from the tree, on its way to meet the ground near Isaac Newton, was weightless. The unit of measurement fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mass
Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physics. It was found that different atoms and different elementary particle, elementary particles, theoretically with the same amount of matter, have nonetheless different masses. Mass in modern physics has multiple Mass in special relativity, definitions which are conceptually distinct, but physically equivalent. Mass can be experimentally defined as a measure (mathematics), measure of the body's inertia, meaning the resistance to acceleration (change of velocity) when a net force is applied. The object's mass also determines the Force, strength of its gravitational attraction to other bodies. The SI base unit of mass is the kilogram (kg). In physics, mass is Mass versus weight, not the same as weight, even though mass is often determined by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rocket Engine Nozzle
A rocket engine nozzle is a propelling nozzle (usually of the de Laval type) used in a rocket engine to expand and accelerate combustion products to high supersonic velocities. Simply: propellants pressurized by either pumps or high pressure ullage gas to anywhere between two and several hundred atmospheres are injected into a combustion chamber to burn, and the combustion chamber leads into a nozzle which converts the energy contained in high pressure, high temperature combustion products into kinetic energy by accelerating the gas to high velocity and near-ambient pressure. History Simple bell-shaped nozzles were developed in the 1500s. The de Laval nozzle was originally developed in the 19th century by Gustaf de Laval for use in steam turbines. It was first used in an early rocket engine developed by Robert Goddard, one of the fathers of modern rocketry. It has since been used in almost all rocket engines, including Walter Thiel's implementation, which made possible G ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gravity Loss
In astrodynamics and rocketry, gravity loss is a measure of the loss in the net performance of a rocket while it is thrusting in a gravitational field. In other words, it is the cost of having to hold the rocket up in a gravity field. Gravity losses depend on the time over which thrust is applied as well the direction the thrust is applied in. Gravity losses as a proportion of delta-v are minimised if maximum thrust is applied for a short time, and by avoiding thrusting directly away from the local gravitational field. During the launch and ascent phase, however, thrust must be applied over a long period with a major component of thrust in the opposite direction to gravity, so gravity losses become significant. For example, to reach a speed of 7.8 km/s in low Earth orbit requires a delta-v of between 9 and 10 km/s. The additional 1.5 to 2 km/s delta-v is due to gravity losses, steering losses and atmospheric drag. Example Consider the simplified case of a vehicle w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Thrust-to-weight Ratio
Thrust-to-weight ratio is a dimensionless ratio of thrust to weight of a rocket, jet engine, propeller engine, or a vehicle propelled by such an engine that is an indicator of the performance of the engine or vehicle. The instantaneous thrust-to-weight ratio of a vehicle varies continually during operation due to progressive consumption of fuel or propellant and in some cases a gravity gradient. The thrust-to-weight ratio based on initial thrust and weight is often published and used as a figure of merit for quantitative comparison of a vehicle's initial performance. Calculation The thrust-to-weight ratio is calculated by dividing the thrust (in SI units – in newtons) by the weight (in newtons) of the engine or vehicle. The weight (N) is calculated by multiplying the mass in kilograms (kg) by the acceleration due to gravity (m/s). The thrust can also be measured in pound-force (lbf), provided the weight is measured in pounds (lb). Division using these two values still give ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]