Excavated Dodecahedron
In geometry, the excavated dodecahedron is a star polyhedron that looks like a regular dodecahedron, dodecahedron with concave pentagonal pyramids in place of its faces. Its exterior surface represents the The Fifty Nine Icosahedra, Ef1g1 stellation of the icosahedron. It appears in Magnus Wenninger's book ''Polyhedron Models'' as model 28, the ''third stellation of icosahedron''. Description All 20 vertices and 30 of its 60 edges belong to its regular dodecahedron, dodecahedral hull. The 30 other internal edges are longer and belong to a great stellated dodecahedron. (Each contains one of the 30 edges of the regular icosahedron, icosahedral core.) Each face is a List of self-intersecting polygons, self-intersecting hexagon with alternating long and short edges and 60° angles. The equilateral triangles touching a short edge are part of the face. (The smaller one between the long edges is a face of the icosahedral core.) Faceting of the dodecahedron It has the same external for ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Star Polyhedron
In geometry, a star polyhedron is a polyhedron which has some repetitive quality of nonconvex polygon, nonconvexity giving it a star-like visual quality. There are two general kinds of star polyhedron: *Polyhedra which self-intersect in a repetitive way. *Concave polyhedra of a particular kind which alternate convex and concave or saddle vertices in a repetitive way. Mathematically these figures are examples of star domains. Mathematical studies of star polyhedra are usually concerned with regular polyhedron, regular, Uniform polyhedron, uniform polyhedra, or the Dual polyhedron, duals of the uniform polyhedra. All these stars are of the self-intersecting kind. Self-intersecting star polyhedra Regular star polyhedra The regular star polyhedra are self-intersecting polyhedra. They may either have self-intersecting Face (geometry), faces, or self-intersecting vertex figures. There are four List of regular polytopes and compounds#Three dimensions 2, regular star polyhedra, known ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Great Stellated Dodecahedron
In geometry, the great stellated dodecahedron is a Kepler–Poinsot polyhedron, with Schläfli symbol . It is one of four nonconvex regular polyhedra. It is composed of 12 intersecting pentagrammic faces, with three pentagrams meeting at each vertex. It shares its vertex arrangement, although not its vertex figure or vertex configuration, with the regular dodecahedron, as well as being a stellation of a (smaller) dodecahedron. It is the only dodecahedral stellation with this property, apart from the dodecahedron itself. Its dual, the great icosahedron, is related in a similar fashion to the icosahedron. Shaving the triangular pyramids off results in an icosahedron. If the pentagrammic faces are broken into triangles, it is topologically related to the triakis icosahedron, with the same face connectivity, but much taller isosceles In geometry, an isosceles triangle () is a triangle that has two sides of equal length and two angles of equal measure. Sometimes it is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Equilateral Triangle
An equilateral triangle is a triangle in which all three sides have the same length, and all three angles are equal. Because of these properties, the equilateral triangle is a regular polygon, occasionally known as the regular triangle. It is the special case of an isosceles triangle by modern definition, creating more special properties. The equilateral triangle can be found in various tilings, and in polyhedrons such as the deltahedron and antiprism. It appears in real life in popular culture, architecture, and the study of stereochemistry resembling the molecular known as the trigonal planar molecular geometry. Properties An equilateral triangle is a triangle that has three equal sides. It is a special case of an isosceles triangle in the modern definition, stating that an isosceles triangle is defined at least as having two equal sides. Based on the modern definition, this leads to an equilateral triangle in which one of the three sides may be considered its base. Th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hexagon
In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°. Regular hexagon A regular hexagon is defined as a hexagon that is both equilateral and equiangular. In other words, a hexagon is said to be regular if the edges are all equal in length, and each of its internal angle is equal to 120°. The Schläfli symbol denotes this polygon as \ . However, the regular hexagon can also be considered as the cutting off the vertices of an equilateral triangle, which can also be denoted as \mathrm\ . A regular hexagon is bicentric, meaning that it is both cyclic (has a circumscribed circle) and tangential (has an inscribed circle). The common length of the sides equals the radius of the circumscribed circle or circumcircle, which equals \tfrac times the apothem (radius of the inscribed circle). Measurement The longest diagonals of a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
List Of Self-intersecting Polygons
Self-intersecting polygons, crossed polygons, or self-crossing polygons are polygons some of whose edges cross each other. They contrast with simple polygons, whose edges never cross. Some types of self-intersecting polygons are: *the crossed quadrilateral, with four edges **the antiparallelogram, a crossed quadrilateral with alternate edges of equal length ***the crossed rectangle, an antiparallelogram whose edges are two opposite sides and the two diagonals of a rectangle, hence having two edges parallel * Star polygons ** pentagram, with five edges ** hexagram, with six edges ** heptagram, with seven edges ** octagram, with eight edges ** enneagram or nonagram, with nine edges ** decagram, with ten edges ** hendecagram, with eleven edges **dodecagram, with twelve edges ** icositetragram, with twenty four edges ** 257-gram, with two hundred and fifty seven edges See also * *Complex polygon The term ''complex polygon'' can mean two different things: * In geometry, a polyg ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Regular Icosahedron
The regular icosahedron (or simply ''icosahedron'') is a convex polyhedron that can be constructed from pentagonal antiprism by attaching two pentagonal pyramids with Regular polygon, regular faces to each of its pentagonal faces, or by putting points onto the cube. The resulting polyhedron has 20 equilateral triangles as its faces, 30 edges, and 12 vertices. It is an example of a Platonic solid and of a deltahedron. The icosahedral graph represents the Skeleton (topology), skeleton of a regular icosahedron. Many polyhedra are constructed from the regular icosahedron. A notable example is the stellation of regular icosahedron, which consists of 59 polyhedrons. The great dodecahedron, one of the Kepler–Poinsot polyhedra, is constructed by either stellation or faceting. Some of the Johnson solids can be constructed by removing the pentagonal pyramids. The regular icosahedron's dual polyhedron is the regular dodecahedron, and their relation has a historical background on the c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Great Stellated Dodecahedron
In geometry, the great stellated dodecahedron is a Kepler–Poinsot polyhedron, with Schläfli symbol . It is one of four nonconvex regular polyhedra. It is composed of 12 intersecting pentagrammic faces, with three pentagrams meeting at each vertex. It shares its vertex arrangement, although not its vertex figure or vertex configuration, with the regular dodecahedron, as well as being a stellation of a (smaller) dodecahedron. It is the only dodecahedral stellation with this property, apart from the dodecahedron itself. Its dual, the great icosahedron, is related in a similar fashion to the icosahedron. Shaving the triangular pyramids off results in an icosahedron. If the pentagrammic faces are broken into triangles, it is topologically related to the triakis icosahedron, with the same face connectivity, but much taller isosceles In geometry, an isosceles triangle () is a triangle that has two sides of equal length and two angles of equal measure. Sometimes it is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Magnus Wenninger
Father Magnus J. Wenninger OSB (October 31, 1919Banchoff (2002)– February 17, 2017) was an American mathematician who worked on constructing polyhedron models, and wrote the first book on their construction. Early life and education Born to German immigrants in Park Falls, Wisconsin, Joseph Wenninger always knew he was going to be a priest. From an early age, it was understood that his brother Heinie would take after their father and become a baker, and that Joe, as he was then known, would go into the priesthood. When Wenninger was thirteen, after graduating from the parochial school in Park Falls, Wisconsin, his parents saw an advertisement in the German newspaper ''Der Wanderer'' that would help to shape the rest of his life. The ad was for a preparatory school in Collegeville, Minnesota, associated with the Benedictine St. John's University. While admitting to feeling homesick at first, Wenninger quickly made friends and, after a year, knew that this was where he nee ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |