Essential Supremum And Essential Infimum
In mathematics, the concepts of essential infimum and essential supremum are related to the notions of infimum and supremum, but adapted to measure theory and functional analysis, where one often deals with statements that are not valid for ''all'' elements in a set, but rather '' almost everywhere'', that is, except on a set of measure zero. While the exact definition is not immediately straightforward, intuitively the essential supremum of a function is the smallest value that is greater than or equal to the function values everywhere while ignoring what the function does at a set of points of measure zero. For example, if one takes the function f(x) that is equal to zero everywhere except at x = 0 where f(0) = 1, then the supremum of the function equals one. However, its essential supremum is zero since (under the Lebesgue measure) one can ignore what the function does at the single point where f is peculiar. The essential infimum is defined in a similar way. Definition As ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Infimum
In mathematics, the infimum (abbreviated inf; : infima) of a subset S of a partially ordered set P is the greatest element in P that is less than or equal to each element of S, if such an element exists. If the infimum of S exists, it is unique, and if ''b'' is a lower bound of S, then ''b'' is less than or equal to the infimum of S. Consequently, the term ''greatest lower bound'' (abbreviated as ) is also commonly used. The supremum (abbreviated sup; : suprema) of a subset S of a partially ordered set P is the least element in P that is greater than or equal to each element of S, if such an element exists. If the supremum of S exists, it is unique, and if ''b'' is an upper bound of S, then the supremum of S is less than or equal to ''b''. Consequently, the supremum is also referred to as the ''least upper bound'' (or ). The infimum is, in a precise sense, dual to the concept of a supremum. Infima and suprema of real numbers are common special cases that are important in anal ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integral Calculus
In mathematics, an integral is the continuous analog of a sum, which is used to calculate areas, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental operations of calculus,Integral calculus is a very well established mathematical discipline for which there are many sources. See and , for example. the other being differentiation. Integration was initially used to solve problems in mathematics and physics, such as finding the area under a curve, or determining displacement from velocity. Usage of integration expanded to a wide variety of scientific fields thereafter. A definite integral computes the signed area of the region in the plane that is bounded by the graph of a given function between two points in the real line. Conventionally, areas above the horizontal axis of the plane are positive while areas below are negative. Integrals also refer to the concept of an ''antiderivative'', a function whose der ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Essential Range
In mathematics, particularly measure theory, the essential range, or the set of essential values, of a function is intuitively the 'non-negligible' range of the function: It does not change between two functions that are equal almost everywhere. One way of thinking of the essential range of a function is the set on which the range of the function is 'concentrated'. Formal definition Let (X,,\mu) be a measure space, and let (Y,) be a topological space. For any (,\sigma())-measurable function f:X\to Y, we say the essential range of f to mean the set :\operatorname(f) = \left\. Equivalently, \operatorname(f)=\operatorname(f_*\mu), where f_*\mu is the pushforward measure onto \sigma() of \mu under f and \operatorname(f_*\mu) denotes the support of f_*\mu. Essential values The phrase "essential value of f" is sometimes used to mean an element of the essential range of f. Special cases of common interest ''Y'' = C Say (Y,) is \mathbb C equipped with its usual topology. Then the essenti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Seminorm
In mathematics, particularly in functional analysis, a seminorm is like a Norm (mathematics), norm but need not be positive definite. Seminorms are intimately connected with convex sets: every seminorm is the Minkowski functional of some Absorbing set, absorbing Absolutely convex set, disk and, conversely, the Minkowski functional of any such set is a seminorm. A topological vector space is locally convex if and only if its topology is induced by a family of seminorms. Definition Let X be a vector space over either the real numbers \R or the Complex number, complex numbers \Complex. A real-valued function p : X \to \R is called a if it satisfies the following two conditions: # Subadditive function, Subadditivity/Triangle inequality: p(x + y) \leq p(x) + p(y) for all x, y \in X. # Homogeneous function, Absolute homogeneity: p(s x) =, s, p(x) for all x \in X and all scalars s. These two conditions imply that p(0) = 0If z \in X denotes the zero vector in X while 0 denote the zer ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Seminormed Space
In mathematics, particularly in functional analysis, a seminorm is like a norm but need not be positive definite. Seminorms are intimately connected with convex sets: every seminorm is the Minkowski functional of some absorbing disk and, conversely, the Minkowski functional of any such set is a seminorm. A topological vector space is locally convex if and only if its topology is induced by a family of seminorms. Definition Let X be a vector space over either the real numbers \R or the complex numbers \Complex. A real-valued function p : X \to \R is called a if it satisfies the following two conditions: # Subadditivity/Triangle inequality: p(x + y) \leq p(x) + p(y) for all x, y \in X. # Absolute homogeneity: p(s x) =, s, p(x) for all x \in X and all scalars s. These two conditions imply that p(0) = 0If z \in X denotes the zero vector in X while 0 denote the zero scalar, then absolute homogeneity implies that p(z) = p(0 z) = , 0, p(z) = 0 p(z) = 0. \blacksquare and that ev ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lp Space
In mathematics, the spaces are function spaces defined using a natural generalization of the -norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue , although according to the Bourbaki group they were first introduced by Frigyes Riesz . spaces form an important class of Banach spaces in functional analysis, and of topological vector spaces. Because of their key role in the mathematical analysis of measure and probability spaces, Lebesgue spaces are used also in the theoretical discussion of problems in physics, statistics, economics, finance, engineering, and other disciplines. Preliminaries The -norm in finite dimensions The Euclidean length of a vector x = (x_1, x_2, \dots, x_n) in the n-dimensional real vector space \Reals^n is given by the Euclidean norm: \, x\, _2 = \left(^2 + ^2 + \dotsb + ^2\right)^. The Euclidean distance between two points x and y is the length \, x - y\, _2 of the straight line b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jean Dieudonné
Jean Alexandre Eugène Dieudonné (; 1 July 1906 – 29 November 1992) was a French mathematician, notable for research in abstract algebra, algebraic geometry, and functional analysis, for close involvement with the Nicolas Bourbaki pseudonymous group and the ''Éléments de géométrie algébrique'' project of Alexander Grothendieck, and as a historian of mathematics, particularly in the fields of functional analysis and algebraic topology. His work on the classical groups (the book ''La Géométrie des groupes classiques'' was published in 1955), and on formal groups, introducing what now are called Dieudonné modules, had a major effect on those fields. He was born and brought up in Lille, with a formative stay in England where he was introduced to algebra. In 1924 he was admitted to the École Normale Supérieure, where André Weil was a classmate. He began working in complex analysis. In 1934 he was one of the group of ''normaliens'' convened by Weil, which would become ' B ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rational Number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all rational numbers is often referred to as "the rationals", and is closed under addition, subtraction, multiplication, and division by a nonzero rational number. It is a field under these operations and therefore also called the field of rationals or the field of rational numbers. It is usually denoted by boldface , or blackboard bold A rational number is a real number. The real numbers that are rational are those whose decimal expansion either terminates after a finite number of digits (example: ), or eventually begins to repeat the same finite sequence of digits over and over (example: ). This statement is true not only in base 10, but also in every other integer base, such as the binary and hexadecimal ones (see ). A real n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complete Measure
In mathematics, a complete measure (or, more precisely, a complete measure space) is a measure space in which every subset of every null set is measurable (having measure zero). More formally, a measure space (''X'', Σ, ''μ'') is complete if and only if :S \subseteq N \in \Sigma \mbox \mu(N) = 0\ \Rightarrow\ S \in \Sigma. Motivation The need to consider questions of completeness can be illustrated by considering the problem of product spaces. Suppose that we have already constructed Lebesgue measure on the real line: denote this measure space by (\R, B, \lambda). We now wish to construct some two-dimensional Lebesgue measure \lambda^2 on the plane \R^2 as a product measure. Naively, we would take the -algebra on \R^2 to be B \otimes B, the smallest -algebra containing all measurable "rectangles" A_1 \times A_2 for A_1, A_2 \in B. While this approach does define a measure space, it has a flaw. Since every singleton set has one-dimensional Lebesgue measure zero, \ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Measurable Function
In mathematics, and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable. This is in direct analogy to the definition that a continuous function between topological spaces preserves the topological structure: the preimage of any open set is open. In real analysis, measurable functions are used in the definition of the Lebesgue integral. In probability theory, a measurable function on a probability space is known as a random variable. Formal definition Let (X,\Sigma) and (Y,\Tau) be measurable spaces, meaning that X and Y are sets equipped with respective \sigma-algebras \Sigma and \Tau. A function f:X\to Y is said to be measurable if for every E\in \Tau the pre-image of E under f is in \Sigma; that is, for all E \in \Tau f^(E) := \ \in \Sigma. That is, \sigma (f)\subseteq\Sigma, where \sigma (f) is the σ-algeb ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |