HOME





Equant
Equant (or punctum aequans) is a mathematical concept developed by Claudius Ptolemy in the 2nd century AD to account for the observed motion of the planets. The equant is used to explain the observed speed change in different stages of the planetary orbit. This planetary concept allowed Ptolemy to keep the theory of uniform circular motion alive by stating that the path of heavenly bodies was uniform around one point and circular around another point. Ptolemy does not have a word for the equant – he used expressions such as "the eccentre producing the mean motion". Placement The equant point (shown in the diagram by the large • ), is placed so that it is directly opposite to Earth from the deferent's center, known as the ''eccentric'' (represented by the × ). A planet or the center of an epicycle (a smaller circle carrying the planet) was conceived to move at a constant angular speed with respect to the equant. To a hypothetical observer placed at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Deferent And Epicycle
In the Hipparchian, Ptolemaic, and Copernican systems of astronomy, the epicycle (, meaning "circle moving on another circle") was a geometric model used to explain the variations in speed and direction of the apparent motion of the Moon, Sun, and planets. In particular it explained the apparent retrograde motion of the five planets known at the time. Secondarily, it also explained changes in the apparent distances of the planets from the Earth. It was first proposed by Apollonius of Perga at the end of the 3rd century BC. It was developed by Apollonius of Perga and Hipparchus of Rhodes, who used it extensively, during the 2nd century BC, then formalized and extensively used by Ptolemy in his 2nd century AD astronomical treatise the '' Almagest''. Epicyclical motion is used in the Antikythera mechanism, itation requested/sup> an ancient Greek astronomical device, for compensating for the elliptical orbit of the Moon, moving faster at perigee and slower at apogee than cir ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Copernicus
Nicolaus Copernicus (19 February 1473 – 24 May 1543) was a Renaissance polymath who formulated a mathematical model, model of Celestial spheres#Renaissance, the universe that placed heliocentrism, the Sun rather than Earth at its center. Copernicus likely developed his model independently of Aristarchus of Samos, an List of ancient Greek astronomers, ancient Greek astronomer who had formulated such a model some eighteen centuries earlier. The publication of Copernicus' model in his book ' (''On the Revolutions of the Celestial Spheres''), just before his death in 1543, was a major event in the history of science, triggering the Copernican Revolution and making a pioneering contribution to the Scientific Revolution. Copernicus was born and died in Royal Prussia, a semiautonomous and multilingual region created within the Crown of the Kingdom of Poland from lands regained from the Teutonic Order after the Thirteen Years' War (1454–1466), Thirteen Years' War. A Poly ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ibn Al-Shatir
ʿAbu al-Ḥasan Alāʾ al‐Dīn bin Alī bin Ibrāhīm bin Muhammad bin al-Matam al-Ansari, known as Ibn al-Shatir or Ibn ash-Shatir (; 1304–1375) was an Arab astronomer, mathematician and engineer. He worked as '' muwaqqit'' (موقت, timekeeper) in the Umayyad Mosque in Damascus and constructed a sundial for its minaret in 1371/72. Biography Ibn al-Shatir was born in Damascus, Mamluk Sultanate around the year 1304. His father died when he was six years old. His grandfather took him in which resulted in Ibn al-Shatir learning the craft of inlaying ivory. Ibn al-Shatir traveled to Cairo and Alexandria to study astronomy, where he fell in, inspired him. After completing his studies with Abu 'Ali al-Marrakushi, Ibn al-Shatir returned to his home in Damascus where he was then appointed ''muwaqqit'' (timekeeper) of the Umayyad Mosque. Part of his duties as ''muwaqqit'' involved keeping track of the times of the five daily prayers and when the month of Ramadan would begin and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Almagest
The ''Almagest'' ( ) is a 2nd-century Greek mathematics, mathematical and Greek astronomy, astronomical treatise on the apparent motions of the stars and planetary paths, written by Ptolemy, Claudius Ptolemy ( ) in Koine Greek. One of the most influential scientific texts in history, it canonized a geocentric model of the Universe that was accepted for more than 1,200 years from its origin in Hellenistic Roman-era Alexandria, Alexandria, in the medieval Byzantine and Islamic Golden Age, Islamic worlds, and in Western Europe through the Middle Ages and early Renaissance until Copernicus. It is also a key source of information about ancient Greek astronomy. Ptolemy set up a public inscription at Canopus, Egypt, in 147 or 148. Norman T. Hamilton found that the version of Ptolemy's models set out in the ''Canopic Inscription'' was earlier than the version in the ''Almagest''. Hence the ''Almagest'' could not have been completed before about 150, a quarter-century after Ptolemy began ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

True Anomaly
In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between the direction of periapsis and the current position of the body, as seen from the main focus of the ellipse (the point around which the object orbits). The true anomaly is usually denoted by the Greek alphabet, Greek letters or , or the Latin script, Latin letter , and is usually restricted to the range 0–360° (0–2π rad). The true anomaly is one of three angular parameters (''anomalies'') that can be used to define a position along an orbit, the other three being the eccentric anomaly and the mean anomaly. Formulas From state vectors For elliptic orbits, the true anomaly can be calculated from orbital state vectors as: : \nu = \arccos ::(if then replace by ) where: * v is the orbital velocity vector of the orbiting body, * e is the eccentricity vector, * r is the orbital position vector (segment ''FP'' in the fi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Season
A season is a division of the year based on changes in weather, ecology, and the number of daylight hours in a given region. On Earth, seasons are the result of the axial parallelism of Earth's axial tilt, tilted orbit around the Sun. In temperate and polar regions, the seasons are marked by changes in the intensity of sunlight that reaches the Earth's surface, variations of which may cause animals to undergo hibernation or to Migration (ecology), migrate, and plants to be dormant. Various cultures define the number and nature of seasons based on regional variations, and as such there are a number of both modern and historical definitions of the seasons. The Northern Hemisphere experiences most direct sunlight during May, June, and July (thus the traditional celebration of Midsummer in June), as the hemisphere faces the Sun. For the Southern Hemisphere it is instead in November, December, and January. It is Earth's axial tilt that causes the Sun to be higher in the sky during the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Meton
Meton of Athens (; ''gen''.: Μέτωνος) was a Greek mathematician, astronomer, geometer, and engineer who lived in Athens in the 5th century BC. He is best known for calculations involving the eponymous 19-year Metonic cycle, which he introduced in 432 BC into the lunisolar Attic calendar. Euphronios says that Colonus was Meton's deme. Work The Metonic calendar incorporates knowledge that 19 solar years and 235 lunar months are very nearly of the same duration. Consequently, a given day of a lunar month will often occur on the same day of the solar year as it did 19 years previously. Meton's observations were made in collaboration with Euctemon, about whom nothing else is known. The Greek astronomer Callippus expanded on the work of Meton, proposing what is now called the Callippic cycle. A Callippic cycle runs for 76 years, or four Metonic cycles. Callippus refined the lunisolar calendar, deducting one day from the fourth Metonic cycle in each Callippic cycle (i.e., ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pliny The Elder
Gaius Plinius Secundus (AD 23/24 79), known in English as Pliny the Elder ( ), was a Roman Empire, Roman author, Natural history, naturalist, and naval and army commander of the early Roman Empire, and a friend of the Roman emperor, emperor Vespasian. He wrote the encyclopedic (''Natural History''), a comprehensive thirty-seven-volume work covering a vast array of topics on human knowledge and the natural world, which became an editorial model for encyclopedias. He spent most of his spare time studying, writing, and investigating natural and geographic phenomena in the field. Among Pliny's greatest works was the twenty-volume ''Bella Germaniae'' ("The History of the German Wars"), which is Lost literary work, no longer extant. ''Bella Germaniae'', which began where Aufidius Bassus' ''Libri Belli Germanici'' ("The War with the Germans") left off, was used as a source by other prominent Roman historians, including Plutarch, Tacitus, and Suetonius. Tacitus may have used ''Bella Ger ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hipparchus
Hipparchus (; , ;  BC) was a Ancient Greek astronomy, Greek astronomer, geographer, and mathematician. He is considered the founder of trigonometry, but is most famous for his incidental discovery of the precession of the equinoxes. Hipparchus was born in Nicaea, Bithynia, and probably died on the island of Rhodes, Greece. He is known to have been a working astronomer between 162 and 127 BC. Hipparchus is considered the greatest ancient astronomical observer and, by some, the greatest overall astronomer of classical antiquity, antiquity. He was the first whose quantitative and accurate models for the motion of the Sun and Moon survive. For this he certainly made use of the observations and perhaps the mathematical techniques accumulated over centuries by the Babylonians and by Meton of Athens (fifth century BC), Timocharis, Aristyllus, Aristarchus of Samos, and Eratosthenes, among others. He developed trigonometry and constructed trigonometric tables, and he solved se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]