Dyadic Derivative
In mathematical analysis, the dyadic derivative is a concept that extends the notion of classical differentiation to functions defined on the dyadic group or the dyadic field. Unlike classical differentiation, which is based on the limit of difference quotients, dyadic differentiation is defined using dyadic (binary) addition and reflects the discontinuous nature of Walsh functions. Definition Pointwise dyadic derivative For a function f defined on if this limit exists. Here, \oplus denotes the dyadic addition operation, which is defined using the dyadic (binary) representation of numbers. That is, if :x = \sum_^ x_j 2^ and y = \sum_^ y_j 2^ with x_j, y_j \in \, then :x \oplus y = \sum_^ (x_j \oplus y_j) 2^, where :x_j \oplus y_j = (x_j + y_j) \pmod 2. Higher-order dyadic derivatives are defined recursion (mathematics)">recursively: f^(x) = (f^)^(x) for r \in \mathbb N. Strong dyadic derivative The ''strong dyadic derivative'' is defined in the context of function sp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Analysis
Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (mathematics), series, and analytic functions. These theories are usually studied in the context of Real number, real and Complex number, complex numbers and Function (mathematics), functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any Space (mathematics), space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space). History Ancient Mathematical analysis formally developed in the 17th century during the Scientific Revolution, but many of its ideas can be traced back to earlier mathematicians. Early results in analysis were ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fundamental Theorem Of Calculus
The fundamental theorem of calculus is a theorem that links the concept of derivative, differentiating a function (mathematics), function (calculating its slopes, or rate of change at every point on its domain) with the concept of integral, integrating a function (calculating the area under its graph, or the cumulative effect of small contributions). Roughly speaking, the two operations can be thought of as inverses of each other. The first part of the theorem, the first fundamental theorem of calculus, states that for a continuous function , an antiderivative or indefinite integral can be obtained as the integral of over an interval with a variable upper bound. Conversely, the second part of the theorem, the second fundamental theorem of calculus, states that the integral of a function over a fixed Interval (mathematics), interval is equal to the change of any antiderivative between the ends of the interval. This greatly simplifies the calculation of a definite integral pr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Step Function
In mathematics, a function on the real numbers is called a step function if it can be written as a finite linear combination of indicator functions of intervals. Informally speaking, a step function is a piecewise constant function having only finitely many pieces. Definition and first consequences A function f\colon \mathbb \rightarrow \mathbb is called a step function if it can be written as :f(x) = \sum\limits_^n \alpha_i \chi_(x), for all real numbers x where n\ge 0, \alpha_i are real numbers, A_i are intervals, and \chi_A is the indicator function of A: :\chi_A(x) = \begin 1 & \text x \in A \\ 0 & \text x \notin A \\ \end In this definition, the intervals A_i can be assumed to have the following two properties: # The intervals are pairwise disjoint: A_i \cap A_j = \emptyset for i \neq j # The union of the intervals is the entire real line: \bigcup_^n A_i = \mathbb R. Indeed, if that is not the case to start with, a different set of intervals can be picked for ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Constant Function
In mathematics, a constant function is a function whose (output) value is the same for every input value. Basic properties As a real-valued function of a real-valued argument, a constant function has the general form or just For example, the function is the specific constant function where the output value is . The domain of this function is the set of all real numbers. The image of this function is the singleton set . The independent variable does not appear on the right side of the function expression and so its value is "vacuously substituted"; namely , , , and so on. No matter what value of is input, the output is . The graph of the constant function is a ''horizontal line'' in the plane that passes through the point . In the context of a polynomial in one variable , the constant function is called ''non-zero constant function'' because it is a polynomial of degree 0, and its general form is , where is nonzero. This function has no intersection point with the a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Step Function
In mathematics, a function on the real numbers is called a step function if it can be written as a finite linear combination of indicator functions of intervals. Informally speaking, a step function is a piecewise constant function having only finitely many pieces. Definition and first consequences A function f\colon \mathbb \rightarrow \mathbb is called a step function if it can be written as :f(x) = \sum\limits_^n \alpha_i \chi_(x), for all real numbers x where n\ge 0, \alpha_i are real numbers, A_i are intervals, and \chi_A is the indicator function of A: :\chi_A(x) = \begin 1 & \text x \in A \\ 0 & \text x \notin A \\ \end In this definition, the intervals A_i can be assumed to have the following two properties: # The intervals are pairwise disjoint: A_i \cap A_j = \emptyset for i \neq j # The union of the intervals is the entire real line: \bigcup_^n A_i = \mathbb R. Indeed, if that is not the case to start with, a different set of intervals can be picked for ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jump Discontinuities
Continuous functions are of utmost importance in mathematics, functions and applications. However, not all functions are continuous. If a function is not continuous at a limit point (also called "accumulation point" or "cluster point") of its domain, one says that it has a discontinuity there. The set of all points of discontinuity of a function may be a discrete set, a dense set, or even the entire domain of the function. The oscillation of a function at a point quantifies these discontinuities as follows: * in a removable discontinuity, the distance that the value of the function is off by is the oscillation; * in a jump discontinuity, the size of the jump is the oscillation (assuming that the value ''at'' the point lies between these limits of the two sides); * in an essential discontinuity (a.k.a. infinite discontinuity), oscillation measures the failure of a limit to exist. A special case is if the function diverges to infinity or minus infinity, in which case the oscillati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Discontinuity (mathematics)
Continuous functions are of utmost importance in mathematics, functions and applications. However, not all Function (mathematics), functions are continuous. If a function is not continuous at a limit point (also called "accumulation point" or "cluster point") of its Domain of a function, domain, one says that it has a discontinuity there. The Set theory, set of all points of discontinuity of a function may be a discrete set, a dense set, or even the entire domain of the function. The Oscillation (mathematics), oscillation of a function at a point quantifies these discontinuities as follows: * in a removable discontinuity, the distance that the value of the function is off by is the oscillation; * in a jump discontinuity, the size of the jump is the oscillation (assuming that the value ''at'' the point lies between these limits of the two sides); * in an essential discontinuity (a.k.a. infinite discontinuity), oscillation measures the failure of a Limit of a function, limit to exist ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Countable Set
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements. In more technical terms, assuming the axiom of countable choice, a set is ''countable'' if its cardinality (the number of elements of the set) is not greater than that of the natural numbers. A countable set that is not finite is said to be countably infinite. The concept is attributed to Georg Cantor, who proved the existence of uncountable sets, that is, sets that are not countable; for example the set of the real numbers. A note on terminology Although the terms "countable" and "countably infinite" as def ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bounded Function
In mathematics, a function f defined on some set X with real or complex values is called bounded if the set of its values (its image) is bounded. In other words, there exists a real number M such that :, f(x), \le M for all x in X. A function that is ''not'' bounded is said to be unbounded. If f is real-valued and f(x) \leq A for all x in X, then the function is said to be bounded (from) above by A. If f(x) \geq B for all x in X, then the function is said to be bounded (from) below by B. A real-valued function is bounded if and only if it is bounded from above and below. An important special case is a bounded sequence, where ''X'' is taken to be the set \mathbb N of natural numbers. Thus a sequence f = (a_0, a_1, a_2, \ldots) is bounded if there exists a real number M such that :, a_n, \le M for every natural number n. The set of all bounded sequences forms the sequence space l^\infty. The definition of boundedness can be generalized to functions f: X \rightarrow Y taking ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Constant Function
In mathematics, a constant function is a function whose (output) value is the same for every input value. Basic properties As a real-valued function of a real-valued argument, a constant function has the general form or just For example, the function is the specific constant function where the output value is . The domain of this function is the set of all real numbers. The image of this function is the singleton set . The independent variable does not appear on the right side of the function expression and so its value is "vacuously substituted"; namely , , , and so on. No matter what value of is input, the output is . The graph of the constant function is a ''horizontal line'' in the plane that passes through the point . In the context of a polynomial in one variable , the constant function is called ''non-zero constant function'' because it is a polynomial of degree 0, and its general form is , where is nonzero. This function has no intersection point with the a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Eigenfunction
In mathematics, an eigenfunction of a linear operator ''D'' defined on some function space is any non-zero function f in that space that, when acted upon by ''D'', is only multiplied by some scaling factor called an eigenvalue. As an equation, this condition can be written as Df = \lambda f for some scalar eigenvalue \lambda. The solutions to this equation may also be subject to boundary conditions that limit the allowable eigenvalues and eigenfunctions. An eigenfunction is a type of eigenvector. Eigenfunctions In general, an eigenvector of a linear operator ''D'' defined on some vector space is a nonzero vector in the domain of ''D'' that, when ''D'' acts upon it, is simply scaled by some scalar value called an eigenvalue. In the special case where ''D'' is defined on a function space, the eigenvectors are referred to as eigenfunctions. That is, a function ''f'' is an eigenfunction of ''D'' if it satisfies the equation where λ is a scalar. The solutions to Equation may also ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |