Duskin Nerve
   HOME





Duskin Nerve
In category theory in mathematics, a 2-category is a category with "morphisms between morphisms", called 2-morphisms. A basic example is the category Cat of all (small) categories, where a 2-morphism is a natural transformation between functors. The concept of a strict 2-category was first introduced by Charles Ehresmann in his work on enriched categories in 1965. The more general concept of bicategory (or weak 2-category), where composition of morphisms is associative only up to a 2-isomorphism, was introduced in 1967 by Jean Bénabou. A (2, 1)-category is a 2-category where each 2-morphism is invertible. Definitions A strict 2-category By definition, a strict 2-category ''C'' consists of the data: * a class of 0-''cells'', * for each pairs of 0-cells a, b, a set \operatorname(a, b) called the set of 1-''cells'' from a to b, * for each pairs of 1-cells f, g in the same hom-set, a set \operatorname(f, g) called the set of 2-''cells'' from f to g, * ''ordinary composit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in most areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient space (other), quotient spaces, direct products, completion, and duality (mathematics), duality. Many areas of computer science also rely on category theory, such as functional programming and Semantics (computer science), semantics. A category (mathematics), category is formed by two sorts of mathematical object, objects: the object (category theory), objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. Metapho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coherent Isomorphism
In mathematics, specifically in homotopy theory and (higher) category theory, coherency is the standard that equalities or diagrams must satisfy when they hold "up to homotopy" or "up to isomorphism". The adjectives such as "pseudo-" and "lax-" are used to refer to the fact equalities are weakened in coherent ways; e.g., pseudo-functor, pseudoalgebra. Coherent isomorphism In some situations, isomorphisms need to be chosen in a coherent way. Often, this can be achieved by choosing canonical isomorphisms. But in some cases, such as prestacks, there can be several canonical isomorphisms and there might not be an obvious choice among them. In practice, coherent isomorphisms arise by weakening equalities; e.g., strict associativity may be replaced by associativity via coherent isomorphisms. For example, via this process, one gets the notion of a weak 2-category from that of a strict 2-category. Replacing coherent isomorphisms by equalities is usually called strictification o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


(∞, N)-category
In mathematics, especially category theory, an (∞, ''n'')-category is a generalization of an ∞-category, where each ''k''-morphism is invertible for k > n. Thus, an ∞-category is an (∞, 1)-category, while an ∞-groupoid In category theory, a branch of mathematics, an ∞-groupoid is an abstract homotopical model for topological spaces. One model uses Kan complexes which are fibrant objects in the category (mathematics), category of simplicial sets (with the standa ... is an (∞, 0)-category. See also * Joyal's theta category References *nlab(infinity,n)-category in nLab* Further reading (∞,n)-categoryin Japanese Homotopy theory Higher category theory {{categorytheory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weak Kan Complex
In mathematics, more specifically category theory, a quasi-category (also called quasicategory, weak Kan complex, inner Kan complex, infinity category, ∞-category, Boardman complex, quategory) is a generalization of the notion of a category. The study of such generalizations is known as higher category theory. Overview Quasi-categories were introduced by . André Joyal has much advanced the study of quasi-categories showing that most of the usual basic category theory and some of the advanced notions and theorems have their analogues for quasi-categories. An elaborate treatise of the theory of quasi-categories has been expounded by . Quasi-categories are certain simplicial sets. Like ordinary categories, they contain objects (the 0-simplices of the simplicial set) and morphisms between these objects (1-simplices). But unlike categories, the composition of two morphisms need not be uniquely defined. All the morphisms that can serve as composition of two given morphisms are re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weak N-category
In category theory in mathematics, a weak ''n''-category is a generalization of the notion of strict ''n''-category where composition and identities are not strictly associative and unital, but only associative and unital up to coherent equivalence or coherent isomorphism. A weak 0-category is just a set, and a weak 1-category is a ordinarily category. This generalisation only becomes noticeable at dimensions two and above where weak 2-, 3- and 4-categories are typically referred to as bicategories, tricategories, and tetracategories. History There is much work to determine what the coherence laws for weak ''n''-categories should be. Weak ''n''-categories have become the main object of study in higher category theory. There are basically two classes of theories: those in which the higher cells and higher compositions are realized algebraically (most remarkably Michael Batanin's theory of weak higher categories) and those in which more topological models are used (e.g. a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tricategory
In mathematics, especially in category theory, a 3-category is a 2-category together with 3-morphisms. It comes in at least three flavors *a strict 3-category, *a semi-strict 3-category also called a Gray category, *a weak 3-category. The coherence theorem of Gordon–Power–Street says a weak 3-category is equivalent (in some sense) to a Gray category. Strict and weak 3-categories A strict 3-category is defined as a category enriched over 2Cat, the monoidal category of (small) strict 2-categories. A weak 3-category is then defined roughly by replacing the equalities in the axioms by coherent isomorphisms. Gray tensor product Introduced by Gray, a Gray tensor product is a replacement of a product of 2-categories that is more convenient for higher category theory. Precisely, given a morphism f : x \to y in a strict 2-category ''C'' and g:a \to b in ''D'', the usual product is given as f \times g : (x, a) \to (y, b) that factors both as u = (\operatorname, g) \circ (f, \operat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Product Category
In the mathematical field of category theory, the product of two categories ''C'' and ''D'', denoted and called a product category, is an extension of the concept of the Cartesian product of two sets. Product categories are used to define bifunctors and multifunctors. Definition The product category has: *as objects: *:pairs of objects , where ''A'' is an object of ''C'' and ''B'' of ''D''; *as arrows from to : *:pairs of arrows , where is an arrow of ''C'' and is an arrow of ''D''; *as composition, component-wise composition from the contributing categories: *:; *as identities, pairs of identities from the contributing categories: *:1(''A'', ''B'') = (1''A'', 1''B''). Relation to other categorical concepts For small categories, this is the same as the action on objects of the categorical product in the category Cat. A functor whose domain is a product category is known as a bifunctor. An important example is the Hom functor, which has the product of the opposite ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Enriched Category
In category theory, a branch of mathematics, an enriched category generalizes the idea of a category (mathematics), category by replacing hom-sets with objects from a general monoidal category. It is motivated by the observation that, in many practical applications, the hom-set often has additional structure that should be respected, e.g., that of being a vector space of morphisms, or a topological space of morphisms. In an enriched category, the set of morphisms (the hom-set) associated with every pair of objects is replaced by an object (category theory), object in some fixed monoidal category of "hom-objects". In order to emulate the (associative) composition of morphisms in an ordinary category, the hom-category must have a means of composing hom-objects in an associative manner: that is, there must be a binary operation on objects giving us at least the structure of a monoidal category, though in some contexts the operation may also need to be commutative and perhaps also to ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monoidal Category
In mathematics, a monoidal category (or tensor category) is a category (mathematics), category \mathbf C equipped with a bifunctor :\otimes : \mathbf \times \mathbf \to \mathbf that is associative up to a natural isomorphism, and an Object (category theory), object ''I'' that is both a left identity, left and right identity for ⊗, again up to a natural isomorphism. The associated natural isomorphisms are subject to certain coherence conditions, which ensure that all the relevant diagram (category theory), diagrams commutative diagram, commute. The ordinary tensor product makes vector spaces, abelian groups, module (mathematics), ''R''-modules, or algebra (ring theory), ''R''-algebras into monoidal categories. Monoidal categories can be seen as a generalization of these and other examples. Every (small category, small) monoidal category may also be viewed as a "categorification" of an underlying monoid, namely the monoid whose elements are the isomorphism classes of the category ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isomorphism
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is derived . The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects). Thus isomorphic structures cannot be distinguished from the point of view of structure only, and may often be identified. In mathematical jargon, one says that two objects are the same up to an isomorphism. A common example where isomorphic structures cannot be identified is when the structures are substructures of a larger one. For example, all subspaces of dimension one of a vector space are isomorphic and cannot be identified. An automorphism is an isomorphism from a structure to itself. An isomorphism between two structures is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]