Discrete Group
In mathematics, a topological group ''G'' is called a discrete group if there is no limit point in it (i.e., for each element in ''G'', there is a neighborhood which only contains that element). Equivalently, the group ''G'' is discrete if and only if its identity is isolated. A subgroup ''H'' of a topological group ''G'' is a discrete subgroup if ''H'' is discrete when endowed with the subspace topology from ''G''. In other words there is a neighbourhood of the identity in ''G'' containing no other element of ''H''. For example, the integers, Z, form a discrete subgroup of the reals, R (with the standard metric topology), but the rational numbers, Q, do not. Any group can be endowed with the discrete topology, making it a discrete topological group. Since every map from a discrete space is continuous, the topological homomorphisms between discrete groups are exactly the group homomorphisms between the underlying groups. Hence, there is an isomorphism between the catego ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lie Group
In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additional properties it must have to be thought of as a "transformation" in the abstract sense, for instance multiplication and the taking of inverses (to allow division), or equivalently, the concept of addition and subtraction. Combining these two ideas, one obtains a continuous group where multiplying points and their inverses is continuous. If the multiplication and taking of inverses are smoothness, smooth (differentiable) as well, one obtains a Lie group. Lie groups provide a natural model for the concept of continuous symmetry, a celebrated example of which is the circle group. Rotating a circle is an example of a continuous symmetry. For an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Group Of Components
In mathematics, specifically group theory, the identity component of a group ''G'' (also known as its unity component) refers to several closely related notions of the largest connected subgroup of ''G'' containing the identity element. In point set topology, the identity component of a topological group ''G'' is the connected component ''G''0 of ''G'' that contains the identity element of the group. The identity path component of a topological group ''G'' is the path component of ''G'' that contains the identity element of the group. In algebraic geometry, the identity component of an algebraic group ''G'' over a field ''k'' is the identity component of the underlying topological space. The identity component of a group scheme ''G'' over a base scheme ''S'' is, roughly speaking, the group scheme ''G''0 whose fiber over the point ''s'' of ''S'' is the connected component ''G''''s''0 of the fiber ''Gs'', an algebraic group.SGA 3, v. 1, Exposé VIB, Définition 3.1 Propert ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Trivial Group
In mathematics, a trivial group or zero group is a group that consists of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element and so it is usually denoted as such: , , or depending on the context. If the group operation is denoted then it is defined by . The similarly defined is also a group since its only element is its own inverse, and is hence the same as the trivial group. The trivial group is distinct from the empty set, which has no elements, hence lacks an identity element, and so cannot be a group. Definitions Given any group , the group that consists of only the identity element is a subgroup of , and, being the trivial group, is called the of . The term, when referred to " has no nontrivial proper subgroups" refers to the only subgroups of being the trivial group and the group itself. Properties The trivial group is cyclic of order ; as such it may be ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Identity Component
In mathematics, specifically group theory, the identity component of a group (mathematics) , group ''G'' (also known as its unity component) refers to several closely related notions of the largest connected space , connected subgroup of ''G'' containing the identity element. In point set topology, the identity component of a topological group ''G'' is the connected component (topology), connected component ''G''0 of ''G'' that contains the identity element of the group. The identity path component of a topological group ''G'' is the path component of ''G'' that contains the identity element of the group. In algebraic geometry, the identity component of an algebraic group ''G'' over a field ''k'' is the identity component of the underlying topological space. The identity component of a group scheme ''G'' over a base scheme (mathematics) , scheme ''S'' is, roughly speaking, the group scheme ''G''0 whose fiber (mathematics) , fiber over the point ''s'' of ''S'' is the connected c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Second-countable
In topology, a second-countable space, also called a completely separable space, is a topological space whose topology has a countable base. More explicitly, a topological space T is second-countable if there exists some countable collection \mathcal = \_^ of open subsets of T such that any open subset of T can be written as a union of elements of some subfamily of \mathcal. A second-countable space is said to satisfy the second axiom of countability. Like other countability axioms, the property of being second-countable restricts the number of open subsets that a space can have. Many "well-behaved" spaces in mathematics are second-countable. For example, Euclidean space (R''n'') with its usual topology is second-countable. Although the usual base of open balls is uncountable, one can restrict this to the collection of all open balls with rational radii and whose centers have rational coordinates. This restricted collection is countable and still forms a basis. Properties ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Uncountable
In mathematics, an uncountable set, informally, is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger than aleph-null, the cardinality of the natural numbers. Examples of uncountable sets include the set of all real numbers and set of all subsets of the natural numbers. Characterizations There are many equivalent characterizations of uncountability. A set ''X'' is uncountable if and only if any of the following conditions hold: * There is no injective function (hence no bijection) from ''X'' to the set of natural numbers. * ''X'' is nonempty and for every ω-sequence of elements of ''X'', there exists at least one element of X not included in it. That is, ''X'' is nonempty and there is no surjective function from the natural numbers to ''X''. * The cardinality of ''X'' is neither finite nor equal to \aleph_0 (aleph-null). * The set ''X'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Open Set
In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line. In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two points), an open set is a set that, with every point in it, contains all points of the metric space that are sufficiently near to (that is, all points whose distance to is less than some value depending on ). More generally, an open set is a member of a given Set (mathematics), collection of Subset, subsets of a given set, a collection that has the property of containing every union (set theory), union of its members, every finite intersection (set theory), intersection of its members, the empty set, and the whole set itself. A set in which such a collection is given is called a topological space, and the collection is called a topology (structure), topology. These conditions are very loose, and allow enormous flexibility in the choice ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Singleton (mathematics)
In mathematics, a singleton (also known as a unit set or one-point set) is a set with exactly one element. For example, the set \ is a singleton whose single element is 0. Properties Within the framework of Zermelo–Fraenkel set theory, the axiom of regularity guarantees that no set is an element of itself. This implies that a singleton is necessarily distinct from the element it contains, thus 1 and \ are not the same thing, and the empty set is distinct from the set containing only the empty set. A set such as \ is a singleton as it contains a single element (which itself is a set, but not a singleton). A set is a singleton if and only if its cardinality is . In von Neumann's set-theoretic construction of the natural numbers, the number 1 is ''defined'' as the singleton \. In axiomatic set theory, the existence of singletons is a consequence of the axiom of pairing: for any set ''A'', the axiom applied to ''A'' and ''A'' asserts the existence of \, which is the same ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homogeneous Space
In mathematics, a homogeneous space is, very informally, a space that looks the same everywhere, as you move through it, with movement given by the action of a group. Homogeneous spaces occur in the theories of Lie groups, algebraic groups and topological groups. More precisely, a homogeneous space for a group ''G'' is a non-empty manifold or topological space ''X'' on which ''G'' acts transitively. The elements of ''G'' are called the symmetries of ''X''. A special case of this is when the group ''G'' in question is the automorphism group of the space ''X'' – here "automorphism group" can mean isometry group, diffeomorphism group, or homeomorphism group. In this case, ''X'' is homogeneous if intuitively ''X'' looks locally the same at each point, either in the sense of isometry (rigid geometry), diffeomorphism (differential geometry), or homeomorphism (topology). Some authors insist that the action of ''G'' be faithful (non-identity elements act non-trivially), althou ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Symmetry Group
In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the ambient space which takes the object to itself, and which preserves all the relevant structure of the object. A frequent notation for the symmetry group of an object ''X'' is ''G'' = Sym(''X''). For an object in a metric space, its symmetries form a subgroup of the isometry group of the ambient space. This article mainly considers symmetry groups in Euclidean geometry, but the concept may also be studied for more general types of geometric structure. Introduction We consider the "objects" possessing symmetry to be geometric figures, images, and patterns, such as a wallpaper pattern. For symmetry of physical objects, one may also take their physical composition as part of the pattern. (A pattern may be specified formally as a scalar field, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Discrete Set
In mathematics, a point (topology), point is called an isolated point of a subset (in a topological space ) if is an element of and there exists a Neighborhood (mathematics), neighborhood of that does not contain any other points of . This is equivalent to saying that the Singleton (mathematics), singleton is an open set in the topological space (considered as a subspace topology, subspace of ). Another equivalent formulation is: an element of is an isolated point of if and only if it is not a limit point of . If the space is a metric space, for example a Euclidean space, then an element of is an isolated point of if there exists an open ball around that contains only finitely many elements of . A point set that is made up only of isolated points is called a discrete set or discrete point set (see also discrete space). Related notions Any discrete subset of Euclidean space must be countable, since the isolation of each of its points together with the fact that R ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |